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Abstract

The notion of “sending a secret message to the future” has been around
for over a decade. Despite this, no solution to this problem is in common
use, or even attained widespread acceptance as a fundamental crypto-
graphic primitive. We name, construct and specify an implementation
for this new cryptographic primitive, “Time-Lapse Cryptography”, with
which a sender can encrypt a message so that it is guaranteed to be re-
vealed at an exact moment in the future, even if this revelation turns
out to be undesirable to the sender. Our solution combines new ideas
with Pedersen distributed key generation, Feldman verifiable threshold
secret sharing, and ElGamal encryption, all of which rest upon the sin-
gle, broadly accepted Decisional Diffie-Hellman assumption. We develop
a Time-Lapse Cryptography Service (“the Service”) based on a network
of parties who jointly perform the service. The protocol is practical and
secure: at a given time T the Service publishes a public key so that anyone
can use it, even anonymously. Senders encrypt their messages with this
public key whose private key is not known to anyone – not even a trusted
third party – until a predefined and specific future time T + δ, at which
point the private key is constructed and published. At or after that time,
anyone can decrypt the ciphertext using this private key. The Service is
envisioned as a public utility publishing a continuous stream of encryption
keys and subsequent corresponding time-lapse decryption keys. We com-
plement our theoretical foundation with descriptions of specific attacks
and defenses, and describe important applications of our service in sealed
bid auctions, insider stock sales, clinical trials, and electronic voting.

∗Supported in part by National Science Foundation grant CNS-0205423.
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1 Introduction and Related Work

First proposed by Timothy May [14], many attractive protocols have been pro-
posed to encrypt messages to send into the future, usually under a name like
“timed-release cryptography”. We coin the phrase “Time-Lapse Cryptography”
to distinguish protocols like ours, in which a fixed amount of time elapses be-
tween the ability to send a message (encrypt) and retrieve it (decrypt), from
other methods in which only estimates of or lower bounds on elapsed time can
be given.

1.1 Setting and Objectives

The setting for our service is as follows: At time T , Alice wishes to send Bob a
message m so that Bob may decrypt it only at or after a specified future time
(T + δ). This decryption will be possible without any further action by Alice.

Our “Time-Lapse Cryptography Service” (“the Service”) makes this possi-
ble. At or before time T , the Service publishes a public key PK along with a
statement that its corresponding private key DK will be revealed at time T + δ.
Alice uses PK to encrypt m with random help r using a probabilistic encryption
scheme and sends the ciphertext c = EPK (m, r) to Bob. She is now committed
to the content of the message, although Bob cannot yet see it. At time (T + δ),
the Service reconstructs and publishes DK , which Bob obtains and uses to de-
crypt c and recover m. (Of course, Alice, if she so wishes, can always reveal m
early by sending Bob m and r.)

The primary objectives of our Service are as follows:

• The Service publishes a public key PK associated with a start time T ,
duration δ. It includes authenticating information with which users can
unequivocally determine the authenticity of PK , T , and δ.

• The private key DK corresponding to PK remains completely secret until
time T + δ.

• At time1 T + δ the Service publishes the decryption key DK , along with
authenticating information that allows any user to unequivocally deter-
mine the authenticity of DK .

• The Service is resistant to attacks that attempt to generate insecure public
keys, prevent the generation of public keys, reconstruct the private keys
early, or prevent accurate and timely reconstruction of private keys.

1.2 Summary of Contributions

We offer a complete description of a service and associated protocols that enable
Time-Lapse Cryptography as described in Section 1.1. The Service we describe

1Plus a negligible delay ε for reconstruction described in Section 3.1.
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is simple and easy to understand by anyone with an elementary cryptography
background.

It is anonymous: the Service knows nothing about who might be using it;
this increases privacy and eliminates any incentive for early private key recon-
struction if the Service were to know a key were used for an important purpose.

The Service allows the originator of a message complete control over when
the recipient may decrypt it, while guaranteeing that the recipient may decrypt
the message at a specific future time.

The protocols rely only on well-studied and widely accepted cryptographic
primitives: Pedersen distributed key generation (DKG) [18], Feldman verifiable
secret sharing (VSS) [9], and the ElGamal cryptosystem [8].2 Conveniently, the
security of all three of these primitives rests on the widely believed assumption
of the hardness of the Decisional Diffie-Hellman problem. This offers an elegant
consistency and simplicity to the security of our proposal.

Our protocols guard against such attacks as: the Service being able to pre-
maturely reveal the decryption key; the Service refusing to reconstruct the de-
cryption key at the required time; users of the Service getting inconsistent views
of the stream of public and private keys. We detail these and other attacks in
Section 2.2. It will be clear from our construction that all these attacks are
rendered impossible under generally accepted assumptions.

Our work also names and describes this protocol as a new cryptographic
primitive that may be useful in complex protocols. This primitive can be viewed
as a simple cryptographic commitment that is concealing and that cannot be
repudiated. Alice is not only bound to not change content of the message; unlike
in some other commitment schemes, such as those based on cryptographic hash
functions, Alice furthermore may not prevent the message from being read by
refusing to reveal the message (input to the hash function). When a binding
commitment is required, Alice’s digital signature on the ciphertext of a time-
lapse encrypted message yields a commitment binding Alice to the still-secret
content of the message.

An additional contribution of our work is a detailed enough description that
will serve as a basis for an implementation of a time-lapse cryptography service,
including details of and defenses against real-world attacks. We plan to deploy
such an implementation in the coming months.

1.3 Applications

While we do not attempt to anticipate all of the possible applications that may
be discovered for such a service, many useful applications already motivate its
creation.

Bids in sealed-bid auctions. Our original motivation for this work came
from joint work with David Parkes and Stuart Shieber on cryptographic auc-
tions [17]. In our auction protocol, we realized the need for bidders to issue

2As described later, we recommend the use of more recent variants of these DKG and VSS
protocols to eliminate specific attacks which may slightly bias the uniform distribution of the
public keys.
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commitments to their bids that were secret to even the auctioneer during the
auction but could not be repudiated after the close of the auction. This pre-
vents a type of abuse in which the auctioneer decrypts some bids and instructs
favored bidders to refuse to unlock their bids (for example, because they offered
far too much.)

Using our service, a bidder doubly encrypts her bids, first with the auction-
eer’s public key PKAU and then the public key PKS published by the time-
lapse encryption service S. This creates the ciphertext c = EPKS

(EPKAU (Bid)),
which is digitally signed by the bidder and published on a bulletin board. Thus
no one, including the auctioneer, knows anything about her bid until either she
reveals the random help value she used in EPKS

() or the appropriate amount
of time elapses. No action of any bidder can prevent the auctioneer from de-
crypting her bid or the public from using her encrypted bid EPKAU

(Bid)) in
verification protocols after the time-lapse expires.

Insider stock trades. An insider to a publicly-traded company could be
legally obligated to issue advance commitments to stock transactions to mitigate
the potential for abuse of inside information, as well as to protect the insider
from false accusations of misuse of inside information. In certain circumstances,
it is desirable that those commitments stay secret until shortly after the ex-
ecution of the transaction in question. Clearly, a commitment that does not
guarantee nonrepudiation does not suffice since an insider may publish in ad-
vance a concealed commitment to a trade and then refuse to reveal it in the
event the trade is no longer desirable to him. If an insider encrypts his transac-
tion in advance using a time-lapse cryptography service, he can always be legally
compelled to complete the transaction although the details of the transaction
remain secret until the appointed time. We suggest a protocol in which insiders
issue their advance directives daily (say, for various lengths of time in advance)
using the Service. These directives may be to buy, sell, or do nothing, which
are indistinguishable under the semantic security of ElGamal. In this way an
insider reveals no information to the market; while it is intuitive that this infor-
mation could hurt the insider, some market microstructure research has shown
that insiders can exploit disclosure rules due to the fact that “the market can-
not observe whether an insider is trading on private information or for personal
portfolio reasons [10].” Current SEC regulations require ex post disclosure for
certain insiders, in part due to the argument that advance disclosure reveals too
much information. The time-lapse cryptography Service answers this argument.

Data collected in clinical trials. In order to preserve the integrity of
clinical trials, the data collected during such a trial may be encrypted using a
time-lapse cryptography service. Because many of these trials are funded by
companies who stand to make or lose significant amounts of money depending
on their outcome, there is the potential for pressure to achieve a positive result.
Use of our Service can mitigate this bias without revealing confidential informa-
tion about the study before it is complete. Time-lapse cryptography prevents
unethical scientists from cheating, and benefits ethical scientists by protecting
them against false claims of fraud or pressure from their funders to achieve a
particular outcome. Our protocol’s property of early revelation also enables
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data collected in such trials to be revealed early in the case of necessity, for
example, in cases that a drug is so effective it would be immoral not to offer it
to the control group.

In one setting, scientists’ data collection process uses our Service to encrypt
data directly as they are being collected, for example, by diagnostic devices
or computer user interfaces. The scientists would not be able to see the data
collected until the conclusion of a phase of the study; this prevents observations
of trends in early data collection from affecting future data collection practices.

In another setting, clinical data would be provided to the scientists in raw
form immediately and to an auditing board encrypted via time-lapse cryptog-
raphy. The scientists would preserve the confidentiality of their data during the
study to prevent leaking of information by the auditing board, but would know
that any tampering with results would be discovered after the expiration of the
time-lapse.

Electronic Voting. In some voting applications, the publication of inter-
mediate results may be undesirable, as it could unduly influence other voters or
election officials. If votes are encrypted using time-lapse cryptography during
an election, results can be kept completely confidential until polls close, as well
as being assuredly revealed promptly when required.

1.4 Related Work

Solutions that do not have a fixed decryption time generally involve expensive
sequential computations (“time-lock puzzles”)3 to recover an initial message,
ensuring that the recipient cannot recover the data before some length of time,
such as those proposed by Rivest et al. [19]. Other solutions that do not guar-
antee fixed time release are made possible by partial key escrow, first described
by Bellare and Goldwasser in [2].

A number of ideas inspiring our approach use known encryption techniques
in which the decryption key is kept secret until a fixed revelation time. Blake
and Chan [3] describe the “Timed Release Encryption Problem” as a sender
encrypting a message such that only a particular receiver can decrypt that
message, and that only after a specific release time has passed, as verified by a
single trusted, third-party time server. They solve this problem with a bilinear
pairing on a Gap Diffie-Hellman group, which requires reasonable cryptographic
assumptions.

Blake and Chan’s solution is similar to those employed in identity-based
cryptography. Other work sharing this connection is the work by Cheon et al. [5]
formalizing “secure timed-release public key encryption” and its equivalence to
strongly key-insulated public key encryption. Their solution, also based on a
bilinear map, requires a trusted “timed-release public server” that periodically
publishes information, based on a private secret, that enables decryption of
previously encrypted texts. Dodis and Yum [7] proposed a related protocol in
which digital signatures become verifiable only at a fixed future time t upon

3Merkle [16] is generally credited with inventing these “puzzles”.
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publication by a trusted third party of “some trapdoor information associated
with the time t.”

Our solution is also related to “token-controlled” public key encryption, first
introduced by Baek et al. in [1]. In token-controlled encryption, messages are
encrypted with both a public encryption key and a secret token, and can only be
decrypted with the private decryption key after the token is released. Time-lapse
cryptography and token-controlled encryption share many important applica-
tions, and in fact an approach similar to time-lapse crypto could be used as a
means of securely generating and distributing the secret tokens with distributed
trust.

Rivest et al. [19], in addition to time-lock puzzles, offer the first description
we know of the use of a secret decryption key for time-lapse cryptography; in
their scheme, a trusted third party creates and distributes public and private
keys at appropriate times. Our protocol is similar, but replaces their trusted
third party with a network of parties and an assumption that no fewer than a
specified number of these parties need to be trusted.

Di Crescenzo et al. [6] employ a trusted time server and a new primitive
called “conditional oblivious transfer” to send messages into the future where the
server never learns the sender’s identity. (It does learn the receiver’s identity.)

2 Preliminaries and Assumptions

Our service consists of the following major components:

• A network of n participating parties P1, . . . , Pn

• Distributed key generation of the public and private keys

• Verifiable threshold secret sharing of the private key

• Secure multi-party reconstruction of components of the private key

• Reconstruction and publication of the private key

• Secure public and private bulletin boards for posting of intermediate and
final results

The protocol is conducted by a “Time-Lapse Cryptography Service” (“the
Service”) consisting of n parties P1, . . . , Pn. The protocol allows for the possi-
bility that these parties may only be intermittently available. It also allows for
the existence of adversaries that may attempt to disrupt the protocol in various
ways. Call the generation of a public key and the corresponding reconstruction
of the private decryption key an “action” of the Service. We assume a threshold
t such that during any one action, at most t − 1 parties may disrupt the pro-
tocol by revealing secret information, submitting false information, or refusing
to participate in the action. Any such party will be informally referred to as
being improper. We also assume that during the entire action, at least t parties
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strictly follow the protocol. Such parties will be informally referred to as being
proper. This implies that n ≥ 2t− 1.

We postulate that for the ElGamal encryption, there is a publicly agreed-
upon cyclic group G and generator g ∈ G of prime order q. For this work
we assume that 2q + 1 is a prime p, and that G is the set of quadratic residues
modulo p; hence, all elements of G other than {1,−1} have order q. This ensures
semantic security vis-à-vis quadratic residuosity.

We further assume that p and q are selected with appropriate attention to
cryptanalysis, so that the encryption scheme used is resistant to known attacks
involving vulnerabilities of particular “unsafe primes.” Without loss of general-
ity, we will refer to only one group G and public generator g for both ElGamal
encryption and the verification of shared secrets. Other groups G are possible,
most notably elliptic curve groups that offer improved efficiency.

2.1 Implementation Considerations

The Service will be implemented on a network of autonomous computers, each
of which represents a party Pi in our protocol. Each party follows the protocol
described below; it obtains the schedule of public key generation and private
key reconstruction from a set of manager computers we next describe.

For further efficiency, reliability and resistance to attacks, we employ a small
network M of K managers that act as a “managing team” for the Service. The
role of the managing team is to create the schedule of the public and corre-
sponding private keys to be produced by the Service; to maintain an internal
bulletin board for use by the parties comprising the Service; and to maintain a
public bulletin board for users of the Service. Integrity of these bulletin boards
is achieved by each manager maintaining his own copies of these two bulletin
boards. Parties and users will look at messages posted on each of the managers’
copies of the bulletin boards and determine the correct values by a majority of
postings.

The authoritative time for all actions shall come from an assumed univer-
sally accessible clock (Section 2.4), and no party or manager shall rely on an
internal clock. All computers comprising the Service should be maintained by
administrators with experience in security considerations and running operating
systems with up-to-date security patches.

2.2 Resistance to Attacks

Up to t − 1 improper parties Pi may attack the Service in various ways. We
describe in detail our protocol’s resistance to the following attacks by these
improper parties at the appropriate phase of our protocol in Section 4.

• Sabotaging the joint construction of a valid, random PK

• Posting an incorrect value of PK

• Prematurely reconstructing DK (prior to time T + δ)
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• Sabotaging the reconstruction of DK at time T + δ

In addition, an improper party can attack the distributed key generation al-
gorithm we describe by introducing a slight bias into the distribution of possible
public keys. We refer the reader to work by Gennaro et al. [12] for a complete
description of this attack and a modified algorithm that prevents it. Those im-
plementing the protocol may wish to periodically review cryptology research on
distributed key generation in order to guard against new attacks.

We also point out that improper parties or users of the Service may mount
denial of service attacks by attempting to overload the Service with internal
or public bulletin board postings or requests for keys. The managers of the
Service can prevent such attacks by appropriate rationing of postings and re-
quests. Of course, there exist other known possible denial of service attacks,
and corresponding countermeasures, that are outside the scope of this work.

2.3 Security Assumptions

The protocol employs the ElGamal encryption scheme [8]. ElGamal’s scheme
is semantically secure under chosen plaintext attacks (CPA): adversaries can
encrypt as many messages as they want and gain no information about the
private key or any other encrypted message. ElGamal is known to be trivially
malleable and hence insecure under chosen ciphertext attacks (CCA-1). We do
not view this as a security risk, because no ciphertexts can be decrypted with the
private key before its reconstruction and publication, and it is expected at that
time that all ciphertexts encrypted with that key can be decoded by anyone.
Malleability is not of concern in our protocol, because it can be avoided by
signing encrypted messages via an appropriate, nonmalleable digital signature
scheme.

We assume that each party Pi uses a computer that accurately and secretly
performs the computations we describe and securely stores all Pi’s secret data.
We assume the parties back up data in some secure way for disaster recovery,
though it must be a method that makes stealing the secrets from backups at
least as difficult as compromising the hosts themselves.

2.4 Communications Assumptions

We assume that each party Pi can communicate privately and secretly with
any other party Pj . For example, each party may have a public/private cryp-
tographic key pair and all parties will know every other party’s public key.

In addition, our protocol will require posting of various intermediate steps
and results. The parties will employ the internal bulletin board provided by the
managing team for that purpose, as described in Section 2.1. Posting of any
message m by a party Pi will always be accompanied by Pi’s digital signature
SIGN i(m).

We also assume a universally accessible and tamper-resistant clock, such
as provided by the US NIST, that determines times for actions taken by the
Service.
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2.5 Summary of ElGamal Encryption

As described above, we assume a publicly known group G and generator thereof
g. The Service creates and publishes an ElGamal public key PK = gx as
described later; the private key is DK = x.

To encrypt a message m, Alice first obtains the public key PK = gx and
creates a random help value y ←R [1, q − 1]. She then computes the ciphertext c
as a pair: c = (gy (mod p),m · gxy (mod p)).

Alice then sends this pair c to Bob. By elementary algebra, Bob can recover
m when the Service publishes the private key x or Alice later sends him the
random help value y.

3 How the Service Works

For a less formal introduction to our protocol, we recall the reader to our high-
level overview in Section 1.1.

3.1 What the Service Does

The Service creates, publishes and maintains “time-lapse cryptographic key
structures” that represent public time-lapse cryptography keys with a specific
lifetime. The Service may generate these structures on a periodic basis for pub-
lic convenience; for example, each day it might release keys with a lifetime of 1
week, or every 30 minutes release keys with a lifetime of 2 hours. These sched-
ules are posted by the managers to the public bulletin board. In addition, the
Service can accept requests from clients to generate new keys with a particu-
lar lifetime; the managers accept these requests and post them on the public
bulletin board. The parties Pi construct the key structures according to the
protocol, individually sign them, and publish the signed key structures on the
public bulletin board.

For each key required by convention or client request, the Service will gener-
ate a key structure KID = (ID , TID , δID ,PK ID) consisting of a unique identifier
ID , a publication time TID , a “time-lapse” δID , and a public key PK ID . Each
party Pi publishes the key structure and signature thereof (KID ,SIGN i(KID)
on the public bulletin board.

At time (TID + δID) the Service will reconstruct and publish the associated
private key DK ID . The public key and private key for KID are related by the
equation PK ID ≡ gDK ID (mod p). It is assumed that g is public. It is crucial
that the private key DK ID is known to no one, and never reconstructed, before
the appropriate time. As before, each party Pi publishes the reconstructed
private key and signature thereof (DK ID ,SIGN i(DK ID) on the public bulletin
board.

There is a subtle issue in that reconstruction of the private key is not in fact
instantaneous. In practice, the Service will begin reconstruction of the private
key DK ID at time (TID + δID) and publish DK ID at time (TID + δID + ε) where
ε is the time required to reconstruct the private key. We assume that ε can be
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made negligible in comparison to any time-lapse δID and will be on the order of
a fraction of a second, and therefore we generally assume ε = 0 for convenience.
At the beginning of the time lapse, we assume that the time TID is an upper
bound on the time when the key is released, and that the Service may release a
key required at time TID at any time at or before TID .

3.2 What the Clients Do

When Alice wishes to send Bob a message m, she requests or selects an appropri-
ate key structure KID from the Service. Alice does not need to identify herself
in any way in order to do this; because the Service publishes the key structures
on the public bulletin board, Alice may use any mechanism for obtaining the
public key structure, e.g. a friend or an anonymous Web proxy server. Alice
then verifies the published digital signatures SIGN i(KID) match the published
key structure KID for a minimum of a threshold t parties Pi, and that these
parties’ KID are identical. This guarantees that PK ID is the public key gener-
ated by all the proper parties, and its corresponding decryption key DK ID will
be subsequently reconstructed and correctly posted by all the proper parties.

To send the message, Alice encrypts m using ElGamal encryption; she cre-
ates a random help value y ←R [1, q − 1] and privately sends Bob the pair
c = (gy (mod p),m ·PK y

ID (mod p)) as well as the index ID of the key structure
KID whose public key she used. Alice may at this stage apply other appropriate
cryptographic primitives, such as a digital signature or message authentication
code, depending on the application. If Alice wishes to send a longer message
than can be accommodated by the group G, she may use our protocol to encrypt
and send a secret key for a block cipher and encrypt her actual message with
that block cipher, or she may break her message up into smaller chunks and
encrypt each one.

Alice now has no ability to stop Bob from decrypting her message. Bob
receives c and stores it, then waits for Alice to send y or for time (TID + δID),
whichever comes first. If Alice sends him y, he decrypts m using gPK ID and y;
if she does not, he obtains PK ID from the Service and decrypts m using that.

4 Protocol for the Parties Pi in the Service

We use a standard distributed key generation (DKG) algorithm as described by
Pedersen [18], and employ Paul Feldman’s simple verifiable secret sharing (VSS)
scheme [9] to guarantee the authenticity of the generated keys.4

Throughout this section we shall designate a set of “qualified” parties Q
which are the parties that have complied completely with the protocol and
not been disqualified for any reason. It will turn out that for any action (i.e.
the construction of an encryption key PK and the subsequent reconstruction

4See Section 2.2 for a brief discussion of a subtle attack and a reference to a modified
algorithm defending against it.
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of the corresponding decryption key DK ), Q will include all proper parties.
Consequently, |Q| ≥ t at all times.

4.1 Distributed key generation

Whenever a fixed “preparation interval” before a posted key generation time T
is reached, each party Pi begins the protocol. For example, the Service might
schedule a 1-week key to be released each day at 10:00 am Eastern Time; the
parties begin preparing this key a few minutes ahead of schedule so that it
can be released at or before 10 am. It will be seen later on that parties to
the Service may be disqualified during the creation phase of the public key by
demonstrably violating the protocol. We shall refer to the set of parties that
were not disqualified as the set Q of “qualified parties”. It will turn out that
all proper parties (and possibly some improper parties) Pi will be members of
Q, and that every proper party will have the same view of (value for) Q.

Each party Pi should choose a random xi ←R [1, q − 1]. This xi constitutes
Pi’s candidate component of the private key. It will turn out that the private key
will be x =

∑
i∈Q xi (mod q). Each Pi should then compute hi = gxi (mod p)

and post (hi,SIGN i(hi) on the internal bulletin board. It will turn out that the
public key will be h =

∏
i∈Q hi (mod p). This hi is Pi’s candidate component

of the public key. Any party Pi who does not post hi is disqualified. Obviously,
all proper parties will have the same view of which parties were disqualified at
this point.

4.2 Sharing the private key components

In order to ensure that the private key x corresponding to the public key h
will be correctly reconstructed at time T + δ, we have to protect against the
possibility that improper parties will refuse to reveal their component xi of the
private key x or reveal a false value instead of xi. This is achieved by use of
verifiable threshold secret sharing. During this phase, further parties Pi may be
disqualified.

Each party Pi should create a random polynomial of degree k = t − 1 in
Fq[z]:

fi(z) = xi + a1iz + a2iz
2 + . . . + akiz

k

The secret key component is fi(0) = xi. Each party Pi should compute se-
cret shares xij = f(j) and verification commitments c0 = hi = gxi , c1 =
ga1i , . . . , ck = gaki . (All commitments ci are computed (mod p).) Each Pi then
privately sends to all Pj , j ∈ [1, n], (j, xij ,SIGN i(j, xij) and posts on the in-
ternal bulletin board signed commitments (c0,SIGN i(c0)), . . . , (ck,SIGN i(ck)).
Every Pj can now verify that xij is a correct share by checking (∗):

(∗) gxij ≡ c0c
j
1c

j2

2 . . . cjk

k (mod p)

(In our proposal, index j is the argument to the polynomial for all Pj .)
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At this point an improper Pi can disrupt the process in one of two ways.
First, he may send Pj an incorrect share xij of his component xi. In this case,
Pj posts the triple (j, xij ,SIGN i(j, xij)) on the internal bulletin board. The
proper parties will check whether xij is valid according to (∗). If it is an invalid
share, then Pi is disqualified. All parties can check whether xij is a valid share
according to (∗). All proper parties will arrive at the same conclusion as to
whether Pi should be disqualified.

Second, Pi may have failed to send Pj the share xij . In this case Pj posts a
signed protest to the internal bulletin board. Pi is then required to reveal xij on
the internal bulletin board by posting a signed message (j, xij ,SIGN i(j, xij)).
Every party can then verify the posted share xij according to (∗). If it is invalid,
then Pi is disqualified. Again, all proper parties will reach the same conclusion
as to the disqualification of Pi.

Putting all the above together, it is clear that all proper parties now have
the same view of the value Q, the set of qualified parties.

Despite the above posting of some shares, the secrecy of the private key is
preserved until time T +δ. Consider first shares xij of the private key component
xi of a proper party Pi. Only improper parties Pj will (unjustly) demand
revelation of such shares. Thus, just a total of at most t − 1 shares of xi will
be posted. By the properties of Shamir secret sharing [20], the component
xi remains random to the improper parties, and any observer of the internal
bulletin board. Of course, the improper parties can always circulate the shares
they received anyway: an adversary gains nothing by this revelation. Next,
consider shares xij of an improper party Pi who refuses to send Pj its share. The
posting of Pi’s shares may reveal xi. However, even if every improper Pi would
broadcast its component xi of the private key x, the private key remains secret
until the components xj of the proper parties are revealed and this happens
only at time T + δ.

4.3 Publishing the public key

Now, each qualified party Pj holds the public key h, a component xj of the
private key x, and shares xij for all qualified parties Pi. These latter shares are
kept for the reconstruction of any missing components xi that are unavailable
at the conclusion of the protocol if Pi is unavailable or corrupted.

Every qualified party Pj , j ∈ Q forms h =
∏

i∈Q gxi (mod p) and the key
structure KID = (ID ,PK ID = h, TID , δID). and posts (KID ,SIGN j(KID)) on
the internal and public bulletin boards. A simple analysis shows that all the
parties proper during this action will post the same value for KID . The number
of such proper parties strictly exceeds n/2. Consequently, any user viewing the
public bulletin board can unambiguously extract a valid value for KID . The
public key PK ID can now be used for time-lapse encryption. Clearly, users can
and should verify the digital signatures on data posted on the public bulletin
board.
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4.4 Reconstructing and publishing the private key

At the appointed time (TID + δID) for the reconstruction of the private key
DK ID , by definition, all parties proper for this action will correctly participate.
Consequently, at least t proper parties will do so. Parties consult the public
bulletin board maintained by the managers to obtain the list of reconstruc-
tion times, and begin the reconstruction protocol when the time TID + δID for
reconstructing DK ID is reached on the universal clock.

First, every party Pi should publish its component xi of the private key
x = DK ID to the internal bulletin board. By definition, all proper parties do
so. Note that even after this is done, certain components xi previously provided
by some Pi ∈ Q may be missing if the party Pi in question is in fact improper.
Every proper party then checks that for every Pi ∈ Q, the posted xi satisfies
the equation gxi ≡ hi (mod p), where hi is as published in the previous step.
For any Pi ∈ Q who has not posted xi or for whom this verification fails, the
parties need to reconstruct the correct xi. Obviously, by definition, at least the
parties proper within this action will do so. Note that the parties Pi /∈ Q are
of no interest since their candidate shares did not enter into the construction of
the private key x.

Now, every party Pj should post the xij it received from Pi during the
distributed key generation phase described in Section 4.2.

Note that at this point, every proper party Pj has either received a verified
xij from Pi which it posts, or in the “Sharing the Private Key” phase (Sec-
tion 4.2) of the protocol, demanded of Pi to post to the internal bulletin board
the share xij . Furthermore, that posted share was verified. This holds because
otherwise Pi would have been disqualified and not included in Q.

In summary, every proper Pj now sees on the internal bulletin board at least
t valid shares xij of Pi’s component xi of the private key x = DK ID . The party
Pj uses any t shares xij to reconstruct xi by polynomial interpolation.

After this is done, every proper party Pj has all the components xi for
all the parties Pi ∈ Q. Every such Pj now computes the sum DK ID = x =∑

i xi (mod q) and publishes (ID ,DK ID ,SIGN j(ID ,DK ID)) to the public bul-
letin board. Now, there will be strictly more than n/2 signed postings agreeing
on the value of DK ID . Consequently, any user looking up the value of DK ID

can unequivocally determine it, even if improper parties attempt to sabotage
the reconstruction or the posting of the private decryption key.

The Handbook of Applied Cryptography [15] offers a concise description of
polynomial interpolation in Section 12.71 in its description of Shamir’s (t, n)
threshold secret sharing scheme [20].

4.5 Proactive renewal of components and shares

Because there may be applications where a time-lapse cryptographic key has a
very long life (for example, a year or more), it may be prudent to periodically
redistribute the shares of each party’s component of the private key and shares
thereof for additional security. With such a system in place, an adversary has
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a limited time to obtain the required number of secret components before the
components are renewed and past components are no longer useful. A protocol
for doing so for ElGamal cryptosystems is described by Herzberg et al. [13] and
related work. This enhancement can be directly combined with the present
paper’s protocol.

5 Conclusions and Future Work

We have developed a simple, practical and clear protocol that solves the prob-
lem of “sending a secret message into the future” and a Service that implements
it. Our formal treatment firmly establishes this idea as a useful cryptographic
primitive; previous work and our suggested applications demonstrate broad ap-
plicability. Our work goes beyond a purely theoretical foundation and describes
how our Service might be implemented in practice with important practical
details, including resistance to specific attacks. We have isolated the fundamen-
tal elements of the “Time-Lapse Cryptography” primitive in our construction.
This allows for established primitives to perform additional cryptographic func-
tions. For example, the sender Alice of a time-lapse encrypted secret to Bob
can restrict subsequent revelation solely to Bob by further encrypting the ci-
phertext again with Bob’s public key; she can achieve non-malleability via a
message authentication code; she can apply her digital signature to prove she
sent the message, etc. Thus we have a clean, independent primitive that is easy
to understand and employ in more complex protocols.

Plans for future work include a complete implementation of our Service on
a distributed network of computers made available for public use. During this
process we will improve the details of our specification and deepen our un-
derstanding of the practical security of the underlying protocols we employ.
Another extension to the approach we describe is its application to time-lapse
cryptography in other cryptosystems using distributed generation of other cryp-
tographic keys, most notably composites of two large primes as used in RSA and
Paillier encryption. Boneh and Franklin first proposed an efficient distributed
RSA key generation protocol [4]; Frankel et al. offer a more robust formulation
in [11].

We also anticipate that we and others will invent and describe novel ap-
plications of this technology once it is publicly available. For example, the
homomorphic properties of ElGamal and Paillier encryption may be useful in a
time-lapse setting. We have also considered modified time-lapse cryptography
protocols in which we retain the properties of sender anonymity and guaranteed
future decryption if the sender does nothing, yet allow the sender to delay de-
cryption until a later time upon request to the Service. One application of this
extension is to the encryption of a will, in which the testator wishes to postpone
its revelation until required.
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