
���������
	���
��
������
��������� �"!�	$#&%'�)(*%+�,�-	.�
!�/10

243537698;:=<?>&3A@B<"CD8
<FE G

H 8JI KL<"M535NO@QP�P�G

>SRUTWV5X
TZY"[

\UP]I_^�`a6D3ACSb�cA8;35E cA3�24CDP]`d^
K4<=Cfe"<=C9GhgLE 8iej35CDkf8O6Zl

\Q<FInm C98;Gdo]3Fp q�<Fkfk9<"cWr�` ks376f6tk

Adaptive Web Proxy Caching Algorithms

Geetika Tewari and Kim Hazelwood
Harvard University

{gtewari,hazelwood}@eecs.harvard.edu

Abstract

Web proxy caching is a well-known technique for reducing access la-
tencies and bandwidth consumption. As in other caching systems, a
replacement policy is necessary for determining when and what to evict
from the cache, and many proxy caching algorithms have been pro-
posed and evaluated over the years. Yet many of these algorithms were
motivated by the Internet traffic trends in place during the design of the
algorithms (1997–1999). The recent proliferation then subsequent de-
cline in the use of peer-to-peer systems suggests that the performance
of proxy caching algorithms may have changed dramatically since their
inception. This paper analyzes the distribution of current web content
and re-evaluates various proxy cache replacement algorithms includ-
ing LFU, LRU and several GreedyDual variants. Based on the change
in Internet traffic trends identified, two new web caching algorithms
are proposed: a local policy that maintains a list of popular URLs and
a global policy that partitions the cache into distinct regions, each of
which is sized according to the popularity of the type of object being
cached. Our results indicate that for small cache sizes LFU and LRU
have higher byte-hit rates than several GreedyDual variants on mod-
ern Internet traffic. We also found that maintaining a hot list improves
byte-hit rate, while a cache-by-regions approach improves hit rate.

1 Introduction
Web caching is the temporary storage of remote web objects
on a local server [5]. Advantages of this technique range from
reduced access latencies to reduced server load and bandwidth
consumption. While a replacement policy is necessary for de-
termining when and what to evict from the cache, proxy caches
have salient features that complicate the management policy,
such as the potential for fragmentation, invalidations of cached
data, and dramatically varying costs for cache misses.

Many proxy caching algorithms [7, 17] have been proposed
and evaluated over the years—from traditional policies such as
LRU, LFU, and FIFO to newer policies such as GreedyDual [19]
and its variants [12, 13]. Yet, many of these algorithms were
motivated by the Internet traffic trends in place during the design
of the algorithms.

A 2002 study [16] revealed changes in web traffic since
1999 at the University of Washington. Results indicated that
HTTP traffic had changed, with peer-to-peer traffic overtaking
WWW traffic as the largest contributor to bandwidth consump-
tion. Since that time, several news sources [1, 2] reported a mea-
sured decline in the use of peer-to-peer file sharing software such
as Gnutella [15] and KaZaA [14] spurred by copyright infringe-
ment lawsuits [3] filed by the Recording Industry Association of

America. These changes in the use of P2P systems warranted
both a re-evaluation of web traffic trends, and a re-evaluation of
the web caching algorithms that were generally driven by the
trends of widely-available traces collected in 1997.

In this paper, we analyzed traces of modern web traffic from
October–December 2003 and noted a decline in multimedia traf-
fic. Through a detailed simulation of various cache-replacement
policies executed using these modern Internet traces, we re-
evaluated the predominant proxy cache replacement algorithms.
We used the insight gathered during our analysis of the existing
algorithms on modern workloads to design and implement two
proxy caching algorithms.

The specific contributions of this paper are:

• A detailed evaluation of the web traffic trends of late-2003.

• A re-evaluation of existing web caching algorithms using
modern web traces.

• The design and evaluation of two novel web caching algo-
rithms designed to adapt to changes in web traffic.

The remainder of this paper is organized as follows. Section 2
discusses the problem of web caching and describes the specific
challenges that distinguish the problem domain. Section 3 ana-
lyzes the modern trends in Internet traffic, and discusses impli-
cations for caching algorithms. Using a trace-driven simulator,
we evaluate of many of the popular web caching algorithms that
are in use today in Section 4. Next, Sections 5 and 6 introduce
and evaluate HotList and GlobalRegions, two new web caching
algorithms. Finally, Section 7 makes recommendations for fu-
ture web caching design algorithms and concludes the paper.

2 Background and Related Work
Three distinct approaches to web caching currently exist, includ-
ing client-side caching, server-side caching, and proxy caching.
Client-side cachingrefers to caches that are built into most web
browsers, which cache Internet objects for a single user, but from
a variety of servers.Server-side caching(also known as reverse
caching) refers to caches that are placed in front of a particular
server to reduce the number of server requests. This paper fo-
cuses onproxy caching, a common form of web caching which
aims to reduce the overall bandwidth consumption of a network.
Proxy caches are often located near network gateways and serve
many users with cached objects from many servers.

Web caching is different from conventional microprocessor
caching or memory paging in several ways. First, cached web
documents vary significantly in size depending on their type

(text, image, video, etc.) and therefore caching algorithms may
require a defragmentation step. Furthermore, same-sized pages
can take different amounts of time to access, and thus caching
algorithms must take into account the anticipated download la-
tency when identifying an eviction candidate. Finally, the access
stream seen by a single proxy cache is the union of several users’
access streams, resulting in a Zipf-like distribution [6].

Web Proxy Caching Algorithms There has been extensive
theoretical and empirical work done on exploring web caching
policies that perform best under different performance metrics.
Many algorithms have been proposed and found effective for
web proxy caching. These algorithms range from simple tra-
ditional schemes such as Least-Recently Used (LRU), Least-
Frequently Used (LFU), First-In First-Out (FIFO), and vari-
ous size-based algorithms, to complex hybrid algorithms such
asLRU-Threshold , which resemblesLRU with a size limit
on single cache elements, Lowest-Relative Value (LRV), which
uses cost, size and last reference time to calculate itsutility,
andGreedyDual [19], which combines locality, size and cost
considerations into a single online algorithm. Several studies
have proposed and empirically evaluated variants on GreedyD-
ual [7, 12, 13] that incorporate a combination of long-term popu-
larity and frequency of access. In addition to these factors, some
other studies have focused on the role of aging in web cache re-
placement policies [8]. Finally, theoretical work has employed
randomization to derive new optimal replacement policies [4].

3 Current Internet Trends
This section focuses on the current distribution of web content.
Figure 1 shows the breakdown of Internet traffic by (a) num-
ber of requests and (b) number of bytes downloaded in Pitts-
burgh. This data was collected for six metropolitan areas, and
the main trends were consistent across all cities. As Figure 1(a)
shows, the majority of downloaded items are images or text.
The majority of bandwidth, however, is consumed by down-
loading applications (Figure 1(b)). Closer inspection of our raw
data indicated that the applications typically consist of patches
from windowsupdate.microsoft.com . New caching al-
gorithms could potentially leverage this fact.

An interesting observation from Figure 1 is that audio and
video constitute a very small proportion of the total workload,
indicating that users have decreased their exchange of multime-
dia files since 2002. A potential implication of this is that web
caching algorithms should place less emphasis on caching mul-
timedia files and greater emphasis on text and image files, but
a more versatile solution is for future algorithms to be able to
adapt to changing distributions.

In order to determine whether material downloaded from
some specific domains should be prioritized, we sorted our
access logs by domain. We found that the most com-
monly accessed video domains across many cities include
www.lolitampegs.comand www.melovempegs.com, while the
the most popular domains in general arewww.google.comand
www.windowsupdate.com. The consistency in these trends over
multiple cities suggest that it may be useful to incorporate this
popularity information into a web caching algorithm, and moti-
vated the design of our HotList algorithm presented in Section 5.

In te r n e t C o n te n t B r e a k d o w n b y R e q u e s ts

0.0E + 00

2 .0E + 05

4 .0E + 05

6 .0E + 05

8 .0E + 05

1 .0E + 06

1 .2 E + 06

1 0/9 /2 003 1 0/1 6 /2 003 1 0/2 3 /2 003 1 0/3 0/2 003 1 1 /6 /2 003 1 1 /1 3 /2 003

N
u

m
b

er
 o

f
R

eq
u

es
ts

O th e r
A p p s
V id e o
A u d io
Im a g e
T e x t

(a) By Number of Requests

In te r n e t C o n te n t B r e a k d o w n b y B y te s

0.0E + 00

2 .0E + 09

4 .0E + 09

6 .0E + 09

8 .0E + 09

1 .0E + 1 0

1 .2 E + 1 0

1 0/9 /2 003 1 0/1 6 /2 003 1 0/2 3 /2 003 1 0/3 0/2 003 1 1 /6 /2 003 1 1 /1 3 /2 003

B
yt

es
 T

ra
n

sf
er

re
d

O th e r
A p p s
V id e o
A u d io
Im a g e
T e x t

(b) By Total Bytes Requested

Figure 1: Breakdown of Internet traffic load. Data is taken from
Pittsburgh logs for the period of October 8 – November 8, 2003.

4 Existing Proxy Cache Algorithm Performance
In this section, we evaluate the performance of eight ex-
isting web caching algorithms, outlined in previous stud-
ies [18], including five standard algorithms and three variants
of GreedyDual-Size.

4.1 Baseline Algorithms
The existing proxy caching algorithms we implemented are
briefly described in the following subsections.

Least-Recently Used (LRU) Evicts the item in cache that was
not requested for the longest amount of time.

Least-Frequently Used (LFU) Evicts the item in cache that
has been requested the fewest number of times.

First-In First-Out (FIFO) Evicts items in the order that they
were inserted into the cache.

Full Cache Flush (Flush) Evicts all items when the cache fills.

Random Evicts randomly selected cache items.

4.2 GreedyDual-Size Variants

Our GreedyDual-Size implementation is based on the specifi-
cation of Cao and Irani [7]. The algorithm associates a value–
H–with each cached object, which is initially set tocost/size.
When the cache is full, the algorithm evicts the object with the
lowestH–minH–and all other objects reduce theirH values by
minH . If a cached page is accessed, itsH value is reset to its
initial value.

The GreedyDual-Size variants we implemented differ in their
definition of the GreedyDual value,H:

GreedyDual-Size(1) (GDS) Sets thecost of each object to 1
in order to minimize miss ratio.

GreedyDual-Size(Packets) (GDSP) Sets thecost of each ob-
ject to the estimated number of network packets sent and re-
ceived in order to minimize the network traffic resulting from
the misses. This is defined as2 + (size/536), where 536 is the
default maximum TCP segment size (RFC-783) [7].

GreedyDual-Size(Latency) (GDSL) Sets thecost of each ob-
ject to the latency that was required to download the object in
order to minimize overall latency.

4.3 Experimental Framework

We collected 22 GB of compressed web access logs from
the IRCache distributed web cache servers during October–
December 2003. The web logs were collected for Boulder, Palo
Alto, Pittsburgh, San Diego, San Jose, and Silicon Valley. As
indicated in Figure 2, these raw web logs were converted into a
format that could be input to our own trace-driven proxy cache
simulator. This required eliminating unnecessary log fields and
generating several new fields–such as object type, unique ID,
and access latency. Our proxy cache size was varied to inves-
tigate how well each algorithm scaled under increasing cache
pressure. The web cache was sized at a fixed percentage of the
total workload: 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%,
1.0% and 5.0%, where the largest cache size is on the order of
several gigabytes.

We compare the performance of the algorithms based onhit
ratio , byte-hit ratio , andlatency reduction. The hit ratio is the
number of requests that hit in the proxy cache as a percentage of
the total requests. The byte-hit ratio is the number of bytes that
hit in the proxy cache as a percentage of total bytes requested.
Finally, latency reduction measures the percentage of the down-
load times of objects that hit in the cache.

From a user’s perspective, latency reduction is the most im-
portant metric. From a network perspective, however, byte-hit

RE S U L T S
–H it R a te
–B y te -h it
–L a te n c y
R e d u c tio n

IRC a c h e
L o g s

C o n v e r te d
L o g s

w e b
la te n c ie s

o b je c t ty p e s , ID s

W e b C a c h e
S im u la to r

ID ,
tim e ,
b y te s ,
ty p e ,
u rl,
la te n c y

Figure 2: Our experimental approach.

0%

10%

20%

30%

40%

50%

60%

0.
00

1%

0.
00

5%

0.
01

0%

0.
05

0%

0.
10

0%

0.
50

0%

1.
00

0%

5.
00

0%

0.
00

1%

0.
00

5%

0.
01

0%

0.
05

0%

0.
10

0%

0.
50

0%

1.
00

0%

5.
00

0%

Hit Rate Byte Hit Rate

R
at

e

LFU LRU FIFO RANDOM FLUSH

Figure 3: Baseline algorithm performance.

0%

10%

20%

30%

40%

50%

60%

0.
00

1%

0.
00

5%

0.
01

0%

0.
05

0%

0.
10

0%

0.
50

0%

1.
00

0%

5.
00

0%

0.
00

1%

0.
00

5%

0.
01

0%

0.
05

0%

0.
10

0%

0.
50

0%

1.
00

0%

5.
00

0%

0.
00

1%

0.
00

5%

0.
01

0%

0.
05

0%

0.
10

0%

0.
50

0%

1.
00

0%

5.
00

0%

Hit Rate Byte Hit Rate Latency Reduction

R
at

e

LFU LRU GDS GDSP GDSL

Figure 4: Performance of LFU, LRU and GreedyDual-Size vari-
ants.

ratio is most important as it results in reduced bandwidth con-
sumption. Finally, hit ratio is a good indicator of the effective-
ness and fairness of a cache replacement policy.

Latency information was not available in the original input
logs, therefore we calculated the latency with respect to Harvard
University. Latency was estimated asTcpHandshakeT ime ∗
size, wheresize is measured in bytes. We collected the TCP
handshake time for a request of zero bytes from every unique
domain in our web logs. For domains that were unavailable, we
assumed the average latency across all domains (calculated to
be 0.708058 seconds). Since we were unable to run our latency
programs from the actual source city and we do not take outgo-
ing link bandwidth into account, our latency numbers should be
considered a relative approximation of the actual latencies.

4.4 Experimental Results

Figures 3–4 show the results of the eight cache replacement poli-
cies described in Sections 4.1 and 4.2 executed on web traces
from the six metropolitan areas listed in Section 4.3, averaged
across all cities. Of the five baseline algorithms shown in Fig-
ure 3, it is clear thatLFU had the best hit rate across all cache
sizes. For smaller cache sizes,LFU had the highest byte-hit
rate until we reached 0.5%, whenLRUbegan having the highest
byte-hit rate. TheFlush policy performed worst across almost
all cache sizes. This is to be expected, asFlush was designed
for a simple implementation rather than to maximize hit rate.

Figure 4 evaluates three variants of the GreedyDual-Size al-
gorithm, and compares their performance to that of the best per-
formers of the baseline algorithms –LFU andLRU. Confirming
observations in previous studies [7],GDSconsistently had the
highest hit rate. In terms of byte-hit rate, however, performance
varied by cache size. For smaller cache sizes,LFUandLRUout-

HotList in LRU
doReplacement(){

While free space < new object size
Find next LRU object, x
If x is on hot list, find next LRU object

If no other LRU object found
Evict item from bottom of hot list

Else evict x
EndWhile

}

Figure 5: Pseudocode for HotList in LRU.

performedGDS, GDSPandGDSL. When cache sizes increased,
GDSPbegan to slightly outperformLFU andLRU. Therefore for
high cache-pressure environments, it seems more appropriate to
implementLFUor LRUrather than a GreedyDual-Size variant in
order to maximize byte-hit rate. Furthermore, since the byte-hit
rate of GDSP does not differ significantly from the byte-hit rates
of other baseline algorithms across larger cache sizes, it may be
best to choose a more consistent performer, such asLRU.

SinceGDSL is optimized for latency effects, we evaluated
eachGDS-variant in terms of the latency reduction, and also re-
port the results in Figure 4. As expected,GDSLachieves the
highest latency reduction, at the cost of lower hit rates thanGDS
and lower byte-hit rates thanGDSP.

These results suggest that popular [7, 12, 13] GreedyDual
based algorithms may not be optimal for caching modern In-
ternet traffic, and motivate the investigation of new web caching
strategies. Therefore, in the following sections, we present the
design of two caching algorithms. These algorithms can be ad-
justed to account for Internet trend changes in the future.

5 HotList
Our first algorithm, HotList, is motivated by Section 3, where

we note that many of the same websites are consistently popular
across various U.S. cities. We hypothesize that items that have
been popular in the past are likely to be valuable in the future.
Many researchers have studied algorithms for determining pop-
ular items in an online manner [9, 10, 11]. We extend their work
by exploring the trade-offs of using these techniques in proxy
caching algorithms, and empirically demonstrating their effec-
tiveness on current web proxy workloads.

5.1 The HotList Algorithm
HotList is designed to complement some of the most effective
baseline algorithms. The main idea is to allow a hot list of then-
most popular items in the data stream to be given priority in the
eviction policy. This approach can be implemented in conjunc-
tion with an existing replacement policy as illustrated in Figure 5
whereLRUis the underlying replacement policy. While Figure 5
featuresLRU, any replacement policy can be used as the basis for
this algorithm.

5.2 HotList Implementation
The challenge in implementing an accurate hot list is maintain-
ing then-most popular items in the data stream without having
to update a count for every unique item in the data stream. A
Synopsis data structure such as aconcise sampleor acounting
sampleis an effective and accurate solution for maintaining a

Counting Sample Algorithm
X = 1
for all t in the dataset

if t already in the list
increment its count

else
add t to the list with probability 1/X

if list overflows
X’ = X * factor
for each unique s in the list

flip a biased coin, decrementing the count on each
tails, until a head is flipped.

X = X’

Figure 6: Counting Samples: A sequential approximate sam-
pling algorithm. In our experiments, we set factor to 3.

0%

3%

6%

9%

12%

15%

18%

21%

LF
U

LF
U

-
H

ot
Li

st

LR
U

LR
U

-
H

ot
Li

st

G
D

S

G
D

S
-

H
ot

Li
st

G
D

S
P

G
D

S
P

-
H

ot
Li

st

LF
U

LF
U

-
H

ot
Li

st

LR
U

LR
U

-
H

ot
Li

st

G
D

S

G
D

S
-

H
ot

Li
st

G
D

S
P

G
D

S
P

-
H

ot
Li

st

Hit Rate ByteHitRate
R

at
e

Figure 7: Performance comparison between baseline algorithms
and their HotList counterparts. The cache size is 0.001% of the
total bytes requested and the hot list size is 200 items.

sample of heavy hitters in a data stream [11]. Synopsis data
structures work in an online manner, which is appropriate for
our application as well as any other streaming application. They
compute approximate (bounded error) frequencies, while auto-
matically adjusting to changing trends in the web-access stream.
Counting samples, shown in Figure 6, provide stronger guaran-
tees on the counts than concise samples [11].

In addition to synopsis data structures, we also considered
data structures such as Count-Min sketch [9], and multistage fil-
ters with conservative update [10], as potential candidates for
maintaining a hot list. While a Count-Min sketch can serve as a
plausible data structure for maintaining a hot list, it is more dif-
ficult to implement than synopsis structures. And while multi-
stage filters are straightforward to implement, they are more suit-
able for reporting whether the count of items in the data stream
exceed a certain numeric threshold, rather than identifying the
top-n items in the stream.

5.3 HotList Performance

We incorporated a hot list into the best performing baseline al-
gorithms:LFU, LRU, GDSandGDSP. Figure 7 shows a perfor-
mance comparison of the baseline algorithms and their HotList
counterparts. The results indicate that while incorporating a hot
list in the baseline algorithms lowered the hit rate on average by
3.57%, the byte-hit rate improved by 2.74% on average. This
could be because the hot list contained very large objects caus-
ing fewer objects to fit into the cache, and resulting in higher
byte-hit rates than hit rates.

Several factors have important implications on the perfor-

TE X T

IM A G E

V ID E O

P o lic y A

P o lic y B

P o lic y C

S
iz

e
A

S
iz

e
B

S
iz

e
C

W e b C a c h e

Figure 8: Conceptual view of GlobalRegions in a web cache.

mance of HotList. First, the size of the hot list should be suf-
ficiently large in relation to the total cache size in order to have a
visible impact on performance. We empirically determined that
the trend displayed in Figure 7 remains only if we increase the
size of the hot list as we increase the size of the cache. The
performance improvements from this, however, are offset by the
cost of referencing the list. Second, the algorithm used to im-
plement the hot list dictates the accuracy of the hot list items
and the amount of time spent maintaining the list. For instance,
while counting samples produce a somewhat more accurate sam-
ple than concise samples, they are slower to update than concise
samples. Such factors should be taken into account when de-
signing and optimizing a hot list.

6 GlobalRegions
Our next algorithm, shown in Figure 8, works to combine several
existing cache replacement policies into a single global policy.

Currently, most web caches consist of a single unified cache.
A single cache eviction policy is applied regardless of the differ-
ent web object types interspersed throughout the unified cache.
An alternate approach is to partition the proxy cache into multi-
ple, distinct regions, each of which stores a single object type.

We call this approachGlobalRegions. Aside from storing a
single internet content type, each region can apply its own re-
placement policy independently of the other regions. Further-
more, each region can make up a different percentage of the
overall proxy cache. The intended advantage is that caching
large objects, such as video files or applications, will not inter-
fere with smaller objects, such as text or images. Furthermore,
the replacement policy in each region can be customized to the
access patterns of a single type of internet content.

6.1 GlobalRegions Design Decisions

There are several design decisions that must be made before im-
plementing a proxy cache with global regions. In this section,
we discuss our approach for making each of these decisions.

Table 1: Global cache region proportions for each configuration.
Object Balanced Requests Bytes

Text 16.7% 30% 15%
Image 16.7% 40% 25%
Video 16.7% 2.5% 7%
Audio 16.7% 2.5% 3%

App 16.7% 10% 45%
Other 16.7% 15% 5%

0%
5 %

1 0%
1 5 %
2 0%
2 5 %
3 0%
3 5 %

ba
la

nc
ed

re
qu

es
ts

by
te

s

ba
la

nc
ed

re
qu

es
ts

by
te

s

ba
la

nc
ed

re
qu

es
ts

by
te

s

ba
la

nc
ed

re
qu

es
ts

by
te

s

ba
la

nc
ed

re
qu

es
ts

by
te

s

ba
la

nc
ed

re
qu

es
ts

by
te

s

ba
la

nc
ed

re
qu

es
ts

by
te

s

s ilic o n
v a lle y

s a n d ie g o s a n jo s e b o u ld e r p a lo a lto p itts b u rg h a v e ra g e

R
at

e

H it R a te

B y te H it R a te

Figure 9: Evaluation of the three proportion configurations for
global cache regions.

Number of Cache Partitions We chose to incorporate six
distinct regions in GlobalRegions, includingTEXT, IMAGE,
VIDEO, AUDIO, APPLICATIONS, and OTHER. We felt that
this partitioning was a good match for today’s trends depicted in
Figure 1 and our design is completely extensible to incorporate
any future object types.

Top Algorithms per Region Next, we determined the top re-
placement algorithms for each of our six object types. We con-
ducted this study by determining the best replacement policy for
an object type’s input stream and ignoring all of the cache ac-
cesses that were not of the selected object type. It is important
to point out that implementingLFU for all six regions is actu-
ally very different than implementing a unifiedLFU policy. A
regionalLFU policy only considers evicting theLFU item that is
of the same type as the object to be inserted.

We found thatLFU was the best replacement policy fortext,
images, applications, andother, while LRUandFIFO outper-
formed other replacement strategies forvideoandmusic.

Cache Partition Proportions Our final design decision was
to determine the best proportions for each region in the proxy
cache. We evaluated three configurations. Our first configura-
tion, which we calledbalance, sized each of the six partitions
equally, atcacheSize/6. Our second configuration,requests, was
motivated by Figure 1(a) which compares the number of requests
for each object type. We used the proportions of requests for
each object type to determine the size of their cache regions. Our
final configuration,bytes, was motivated by Figure 1(b), where
we found that nearly half of all of the internet bandwidth was
used to download application files, and therefore sized each re-
gion according to these bandwidth trends. The final proportions
of each cache region are shown in Table 1 for each configuration.

These proportions were evaluated and are compared in Fig-
ure 9. The figure shows several interesting results. First, we see
that on average, the byte-hit rate was maximized by setting our
cache size proportions using thebytes configuration, which
not coincidentally, was optimized for the bytes traveling over the
wire. Similarly, the configuration resulting in the best hit rate, on
average, was therequests configuration. Again, this makes
sense, because therequests configuration was based on the
actual number of requests made for each object type. There-
fore, when partitioning a cache to employ GlobalRegions, region

0%

1 0%

2 0%

3 0%

4 0%

5 0%

6 0%

0.
00

1%

0.
00

5%

0.
01

0%

0.
05

0%

0.
10

0%

0.
50

0%

1.
00

0%

5.
00

0% av
g

0.
00

1%

0.
00

5%

0.
01

0%

0.
05

0%

0.
10

0%

0.
50

0%

1.
00

0%

5.
00

0% av
g

H it R a te B y te H it R a te

R
at

e

B y B y te s B y R e q u e s ts B a la n c e d L F U L R U

Figure 10: Performance of GlobalRegions.

sizes should be allocated according to the desired optimization
criteria.

6.2 GlobalRegions Performance
We evaluated the performance of GlobalRegions by comparing
the hit rate and byte-hit rate of a partitioned cache with a unified
cache performingLFUor LRU. We chose these two because they
were some of the top performers of the eight baseline replace-
ment algorithms we tested. Our partitioned cache was sized such
that the sum of all six regions was equal to the size of the sin-
gle unified cache. Furthermore, the replacement algorithms used
for each cache region were as follows: Text–LFU, Image–LFU,
Video–FIFO , Audio–LRU, Application–LFU, and Other–LFU.

The results, shown in Figure 10, reflect several interesting
trends. First, employing GlobalRegions and partitioning the
cache using ourrequests configuration performs better than
the unified policies in terms of hit rate. For byte-hit rate, how-
ever, employing a unified policy performs better than all of the
partitioned cache configurations. We believe that this is the re-
sult of the small size of certain partitions in GlobalRegions. For
instance, video files have been allocated 2.5–16% of the over-
all cache size, which is already less than 1% of the actual byte
traffic of the internet trace. It is likely that much of the byte-hit
rate reduction is due to the large items that can no longer fit in
this cache region. In support of this, Figure 10 shows a rela-
tive increase in the byte-hit rate as the cache size increases. We
can conclude that partitioning the cache into distinct regions can
improve the hit rate of proxy caches, and for large caches, can
approach the byte-hit rate potential of a unifiedLFU cache.

7 Conclusions
Designing effective web caching algorithms is particularly chal-
lenging in light of the ever-changing trends in Internet content
and usage. In this paper, we characterized today’s Internet trends
and the resulting impact on web caching algorithm design. We
found that images and text files constitute a majority of down-
loaded items in our modern traffic traces, while downloads of ap-
plications such as operating system patches dominate bandwidth
consumption. These changes have impacted the performance of
several proxy cache replacement policies–such as GreedyDual
variants, whose performance does not differ significantly from
simple schemes such asLFU andLRU, and are outperformed by
them in terms of byte-hit rate for small cache sizes.

The observations on Internet trends motivated the design of

two adaptive proxy cache algorithms that can adjust to chang-
ing trends. HotList leverages the trend that many popular In-
ternet sites are also popular across the country, and can oper-
ate effectively in conjunction with an underlying replacement
policy. GlobalRegions leverages object-specific behavior within
the cache, and supports distinct eviction policies for each object
type, while reducing the cache contention from large multimedia
object types. The improvements in performance—higher byte-
hit rate with HotList and higher hit rate with GlobalRegions—
support the importance of re-evaluating web caching algorithms
in response to changing Internet traffic trends and designing
adaptive web caching algorithms.

References
[1] Internet application usage continues to decline.

Nielsen/NetRatings, September 2003.
[2] Music fans cut back on free file-swapping, 40% drop in Kazaa

usage. Yahoo Technology News, October 2003.
[3] Record industry sues hundreds of internet music swappers. The

New York Times, September 2003.
[4] O. Bahat and A. Makowski. Optimal replacement policies for

non-uniform cache objects with optimal eviction. InIEEE INFO-
COM Conference on Computer Communications, April 2003.

[5] G. Barish and K. Obraczka. World wide web caching: Trends and
techniques. May 2000.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and implications. In
INFOCOM, pages 126–134, 1999.

[7] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms.
In USENIX Symposium on Internet Technologies and Systems, De-
cember 1997.

[8] E. Cohen and H. Kaplan. The age penalty and its effect on cache
performance. In3rd Usenix Symposium on Internet Technologies
and Systems, pages 73–84, 2001.

[9] G. Cormode and S. Muthukrishnan. Improved data stream sum-
maries: The count-min sketch and its applications. InDIMACS
Technical Report, 2003.

[10] C. Estan and G. Varghese. New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice. In
ACM Transactions on Computer Systems, August 2003.

[11] P. B. Gibbons and Y. Matias. New sampling-based summary
statistics for improving approximate query answers. InACM Con-
ference on the Management of Data, pages 331–342, 1998.

[12] S. Jin and A. Bestavros. Popularity-aware greedydual-size web
proxy caching algorithms. In20th Intl. Conf. on Distributed Com-
puting Systems, April 2000.

[13] S. Jin and A. Bestavros. Greedydual* web caching algorithm:
Exploiting the two sources of temporal locality in web request
streams. International Journal on Computer Communications,
24(2):174–183, February 2001.

[14] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the
kazaa network. In3rd IEEE Workshop on Internet Applications,
2003.

[15] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and im-
plications for system design.IEEE Internet Computing Journal,
6(1), 2002.

[16] S. Saroui, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. Levy.
An analysis of internet content delivery systems. InFifth Sympo-
sium on Operating Systems Design and Implementation, Decem-
ber 2002.

[17] J. Wang. A survey of Web caching schemes for the Internet.ACM
Computer Communication Review, 25(9):36–46, 1999.

[18] R. Wooster and M. Abrams. Proxy caching that estimates page
load delays. In6th International World Wide Web Conference,
April 1997.

[19] N. Young. On-line caching as cache size varies. In2nd ACM-
SIAM symposium on Discrete algorithms, pages 241–250, 1991.

