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Abstract 
 

We develop a theory of one-forms on meshes. The theory culminates in a discrete analog of the Poincare-Hopf in-
dex theorem for meshes. We apply this theorem to obtain some old and new results concerning the parameterization 
of 3D mesh data. Our first result is an easy proof of Tutte's celebrated "spring-embedding" theorem for planar 
graphs, which is widely used for parameterizing meshes with the topology of a disk by a planar tiling with a convex 
boundary. Our second result generalizes the first, dealing with the case where the mesh contains multiple bounda-
ries, which are free to be non-convex. We characterize when it is still possible to achieve an injective parameteriza-
tion, despite these boundaries being non-convex. The third result is an analogous Tutte-like theorem for meshes with 
genus 1 (topologically equivalent to the torus), paving the way for a general method to locally parameterize such 
meshes to the plane in a naturally seamless manner. The last result generalizes recent work of Gu and Yau. Applica-
tions of these results to the parameterization of meshes with disk and toroidal topologies are demonstrated. Exten-
sions to higher genus meshes are discussed. 
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1.  Introduction 
 
In 1963, Tutte [31] proved his celebrated "spring embedding" theorem for planar graphs. This theorem 
maintains that a planar graph may be easily drawn in the plane by embedding the graph boundary on a 
strictly convex polygon and solving a linear system for each of the two coordinates of the interior verti-
ces. The linear system forces each interior vertex to lie at the centroid of its neighbors. Tutte proved that 
the result is indeed a straight line plane drawing, and, furthermore, the faces are non-degenerate, bound-
ing convex regions in the plane. 
 
Tutte's simple procedure remains a popular planar graph drawing method to date. It was generalized by 
Floater [7,8], who showed that the theorem still holds when the boundary is not strictly convex (i.e. adja-
cent boundary vertices may be collinear), and when each interior vertex is positioned at a general convex 
combination of its neighbors coordinates. The method has established itself as the method of choice for 
parameterizing a three-dimensional mesh with the topology of a disk to the plane in geometric modeling 
and computer graphics, along with a multitude of variations on this theme (e.g. [6,7,20]). The main reason 
for the method's popularity is that it is computationally simple, and also guarantees an injective parame-
terization homeomorphic to a disk, meaning that the individual planar polygons are convex and do not 
intersect each other. The latter is crucial for the correctness of many algorithms relying on an underlying 
parameterization. As such, Tutte's theorem is the basis for solutions to other computer graphics problems, 
such as morphing (e.g. [10,13,16]). Many recipes exist for the convex combination weights in order to 
achieve various effects in the parameterization. Typically, it is desirable to reflect the geometry of the 
original 3D mesh in the 2D parameterization, so the 2D version should be a minimally distorted 2D ver-
sion of the 3D original. Depending on how distortion is measured, different weights are used. For more 
details, see the recent survey by Floater and Hormann [11]. 
 
Inspired by recent work on the theory of discrete vector fields [3,14,22] and their use in vector field visu-
alization [25,30] and mesh parameterization [14], we describe a simple theory of one-forms on meshes. In 
a nutshell, this involves assigning non-zero values to the half-edges of the mesh, and analyzing the behav-
ior of these when additional balancing conditions are imposed on the one-form. It culminates in an Index 
Theorem which is the discrete analog of the Poincare-Hopf index theorem for vector fields on surfaces.  
 
One-forms on meshes turn out to be a very useful tool for mesh processing. It particular, the central result 
of Tutte's planar embedding theorem, when formulated in terms of the vector differences along edges of 
the graph, follows as a special case of the Index Theorem with no more than simple counting arguments 
and elementary geometry. The techniques used in our proof are considerably simpler than those used in 
proofs of different versions of Tutte's theorem which evolved over the years [2,5,8,12,26,29]. Moreover, 
the same arguments allow us to relax the conditions on the embedding of the mesh boundary, and even 
allow multiple boundaries. We show that it is sufficient that the embedding is well behaved (in a manner 
to be made precise later) at the vertices along the boundaries, even if they are non-convex, in order that 
the entire embedding be well-behaved. Since the requirement of a (pre-determined) convex boundary is 
the (only) major drawback of Tutte's method, this result could make Tutte's method even more popular 
than it already is. It introduces extra degrees of freedom into the solution, which may be use to produce 
less distorted parameterizations. 
 
While variants of Tutte's theorem for meshes with the topology of a disk (namely genus 0 with at least 
one boundary) are easy consequences of our Index Theorem, novel and more interesting results may be 
obtained for meshes with higher genus. Particularly important results may be obtained for the toroidal 
(genus g=1) case. Since, due to the different topologies, it is impossible to map the torus homeomorphi-
cally to the plane without cutting it, the most we can hope for is a parameterization method which has this 
behavior locally. Gu and Yau [14] showed how to generate local parameterizations with so-called "con-
formal" structure. In the torus case, their parameterizations have the following properties: 1. Any con-
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nected submesh having the topology of the disk is mapped to a disk in the plane. 2. Any two connected 
submeshes with non-empty intersection, all (the two submeshes and their intersection) having the topol-
ogy of the disk, are mapped to disks in the plane, such that the two parameterizations coincide, up to a 
translation of the plane, on their intersection. Gu and Yau do not prove that the resulting mappings of the 
disks to the plane are free of flips. Additionally Gu and Yau restricted their attention to a very narrow 
subset of the possible parameterizations, to triangular meshes. We apply our one-form theory to close this 
gap, providing a generalization of their basic algorithm, and prove that all these parameterizations are lo-
cally injective. This may be considered a "Tutte-like" theorem for the torus.  
 
For higher genus (g>1) meshes, the situation is more complex. Any 2D parameterization must contain 2g-
2 "double wheels", which are neighborhoods of vertices whose faces wind twice around the vertex, so the 
parameterization cannot be locally injective at these vertices. While we do not yet fully understand this 
case, we are able to provide some mathematical and algorithmic insight into how to control and generate 
such parameterizations. 
 
Beyond the theoretical interest, seamless local parameterization of higher genus meshes is useful for ap-
plications such as "cut and paste" operations [4], texture mapping [18] and remeshing. 
 
 
2.  One-forms on Meshes and the Index Theorem 
 
In this section we define the concept of a one-form over a mesh. This is a discrete analog of a vector field 
on a surface. We prove a discrete analog of the Poincare-Hopf index theorem on vector fields that relates 
the number of singularities in the one-form to the Euler characteristic of the mesh.  
 
Let G=<V,E,F> be a mesh. V, E and F are the sets of vertices, edges and faces of G, containing V vertices, 
E edges and F faces respectively. In this paper we will be concerned with meshes which are closed ori-
ented manifolds with genus g. By oriented we mean that all faces are given with consistent orientations 
(i.e. the two half-edges incident on two adjacent faces have opposite orientations). This induces also a 
consistent "orientation" (ordering) on the half-edges emanating from a vertex. 
 
Definition 2.1: A one-form [G,∆z] is an assignment of a real value ∆zuv to each half edge euv of G such 
that ∆zuv =  -∆zvu. A one-form is called valid if none of the values ∆zuv vanish.♦ 
 
Of particular interest are the sign patterns of a valid one-form at the half-edges associated with a vertex or 
face of the mesh. We use these to classify the vertices and faces, as illustrated in Figure 1. The most basic 
element is the corner, which is where the one-form changes sign (direction) as you circle a vertex or. 
 
Definition 2.2: Let [G,∆z] be a valid one-form, v be a vertex of G and f a face of G,. The pair <v,f> is 
called a corner of [G,∆z] if sign(∆zvu) ≠ sign(∆zvw), where u and w are the (unique) neighbors of v in f.  In 
this case we say that v and f participate in the corner.♦ 
 
Definition 2.3: The index of a vertex v in [G,∆z] is ind(v) = (2-corn(v))/2, where corn(v) is the number of 
corners of [G,∆z] in which v participates. A vertex v of G is called a non-singular vertex of [G,∆z] if 
ind(v)=0 and a saddle vertex if ind(v)<0. If ind(v)=1, and all values of ∆z at v are positive, v is called a 
source, otherwise it is called a sink. ♦ 
 
Definition 2.4: The index of a face f in [G,∆z] is ind(f) = (2-noncorn(f))/2, where noncorn(f) is the num-
ber of non-corners of [G,∆z] in which f participates. A face f of G is called a non-singular face of [G,∆z] 
if ind(f)=0 and a saddle face if ind(f)<0. If ind(f)=1, it is called a vortex. ♦ 
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The fifth equality is due to the total number of corners in the mesh being the same whether one counts 
over each vertex or over each face. The sixth equality is due to the fact that each edge appears in the va-
lence count of two faces. The seventh equality is Euler’s formula. ♦ 
 
A special case of our Index Theorem was obtained by Banchoff [1] and Lazarus and Verroust [19]. How-
ever, their theorem applies only to so-called null-cohomologous one-forms (arising from the differences 
of a scalar potential field defined on the mesh vertices) over a triangle mesh, and thus does not consider 
faces of non-zero index. Thus their summation of indices is over vertices exclusively, whereas we sum 
over faces as well. Indeed, in Section 3, we deal with non-triangular interior faces (which we need to 
prove are not saddles), and more importantly, with a non-convex exterior face (that in fact is a saddle). 
 
As we will see, we will be able to characterize the scenario of Tutte's theorem in terms of valid one-forms 
on a genus-0 mesh. These one-forms will have certain balances, which will constrain the types of non-
singular faces and vertices that can occur. We now restrict our attention to this subset of one-forms. 
 
Definition 2.6: Given a set of (not necessarily symmetric) positive weights uij associated with each half 
edge in G and a one-form [G,∆z], we call a face f, closed wrt (with respect to) u if  

0h h
h f

u z
∈∂

∆ =∑                                                                       (1) 

∂f is the boundary operator applied to the face, yielding the set of half-edges incident on the face, ordered 
by the face orientation. ♦ 
 
Definition 2.7: Given a set of (not necessarily symmetric) positive weights wij associated with each half 
edge in G and a one-form [G,∆z], a vertex is called co-closed wrt w if  

0h h
h v

w z
∈δ

∆ =∑                                                                      (2) 

where δv is the coboundary operator applied to the vertex, yielding the set of half-edges incident on the 
vertex, ordered by the vertex orientation. ♦ 
 
One-forms which everywhere satisfy (1) and (2) are called harmonic one-forms. Closedness of faces and 
co-closedness of vertices are related to their indices: 
 
Corollary 2.8: If a face f is closed in a valid one-form wrt to some set of positive weights, then ind(f) ≤ 0. 
If a vertex v is co-closed wrt to some set of positive weights, then ind(v) ≤ 0. 
 
Proof: If f were a vortex, then all of the terms in (1) would be positive and thus could not sum to zero. 
The same holds for v a source or sink. ♦ 
 
 
3.  Parameterizing a Disk 
 
Tutte's theorem may be stated as follows: 
 
Theorem 3.1 (Tutte [31]): Let G=<V,E,F> be a 3-connected planar graph with boundary vertices B⊂V 
defining a unique infinite exterior face fe. Suppose ∂fe is embedded in the plane as a (not necessarily 
strictly) convex planar polygon, and each interior vertex is positioned in the plane as a convex combina-
tion of its neighbors, then the straight-line drawing of G with these vertex positions is an embedding (no 
edges cross). In addition, this embedding has strictly convex interior faces. ♦ 
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Such an embedding is found by solving the following linear system for the x and y coordinate values of 
the vertices: 

( )

( )
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1,..,

1,..,

1,..,
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y b i V B V
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= = −

= = −

= = − +

= = − +

∑

∑

V

i

                                                                (3)                          

where we label the interior vertices with {1,..,V-B}, and the remaining boundary vertices with {V-
B+1,..V}. The wij are any set of positive numbers with unit row sums (hence the term convex combina-
tions). We do not assume that wij are symmetric. N(vi) is the set of vertices neighboring vi.  
 
 
3.1  Single Convex Boundary 
 
In Tutte's scenario, the boundary polygon, described by [bx,by] is assumed to be (not necessarily strictly) 
convex. It is well known that (3) has a unique solution [x,y], which we call a Tutte solution for G. This 
follows directly from the fact that the linear system is irreducible, and is weakly diagonally dominant with 
at least one strongly diagonally dominant row [32]. We denote by [G,x,y] the straight line drawing of this 
solution. 
 
Proving Tutte's theorem amounts to showing that [G,x,y] is a straight-line planar embedding (ie. the map-
ping to the plane is injective). We proceed in this direction by examining the properties of span(x,y) – all 
the different projections of the drawing, and constructing a one-form on G. For any choice of reals α and 
β, define z≡αx+βy. At every interior vertex vi, define: 

( ) ( )

( )

( )

)
j i j i

j i

j i

i i i

ij j ij j
v N v v N v

ij j j
v N v

ij j
v N v

z x y
w x w y

w x y

w z

∈ ∈

∈

∈

≡ α + β

= α +β

= (α +β

=

∑ ∑

∑

∑

                                                            (4) 

and at the boundary vertices: 
x y

i iz b b≡ α +β  
Now define the one-form ∆zij = -∆zji ≡ zj-zi.  Since the rows sum to unity, (4) implies that every interior 
vertex v of [G,∆z] is co-closed wrt w: 

0h h
h v

w z
∈δ

∆ =∑  

Furthermore, because the ∆z are differences of the z values at vertices, they must sum to zero along any 
directed closed loop in G. In particular, each face f satisfies 

0h
h f

z
∈∂

∆ =∑  

meaning ∆z is closed wrt unit weights. 
 
Figure 2 illustrates the generic structure of the one-form ∆z. Due to the convexity of the boundary B, a 
property which is preserved under linear transformations, B will generically contain one vertex with a 
maximum z and one with a minimum z. Every other vertex of B has one neighbor in B with a strictly 
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greater z value, and its other neighbor in B with a strictly smaller z value. As a result, none of these verti-
ces can be sources or sinks in [G,∆z], i.e. they must have non-positive index. 
 
The following lemma concerning one-forms closely corresponds to the scenario of the Tutte embedding 
theorem. 
 
Lemma 3.2: If G has genus 0, [G,∆z] is a valid one-form such that all F faces are closed wrt some set of 
positive weights, V-B vertices are co-closed wrt some set of positive weights and of the remaining B ver-
tices, B-2 have index ≤ 0, then [G,∆z] has no saddle vertices and no saddle faces. 
 
Proof: By the Index Theorem (Theorem 2.5), the sum of the indices over all of the faces and vertices on a 
spherical mesh must total +2. Due the assumption, all the faces and V-2 vertices can contribute only non-
positive values to this sum. The only way to achieve the sum of +2 is for all F faces and V-2 of the verti-
ces to have vanishing index, and for the remaining two vertices to have the maximal index value of +1. In 
other words, [G,∆z] has no saddles (but it does have a source vertex and a sink vertex). ♦ 
 
It is possible for a one-form, ∆z as constructed above from [G,x,y], to vanish on interior or boundary 
edges. This one-from will be invalid and Lemma 3.2 will not directly apply. Fortunately it is possible to 
slightly perturb any such a one-form into a valid one-form without changing the signs of the one-form 
values along the half-edges that have non-zero values. Appendix A shows how this is achieved. The re-
sulting valid one-form will now have vertices that are not co-closed. But the important property of the 
vertices (resp. faces) in the proof of Lemma 3.2 is not their co-closedness (resp. closedness), but rather 
the weaker property that they are mixed - have both positive and negative values of the one-form on the 
half-edges emanating from them in δv (resp. half-edges circling ∂f) and are thus guaranteed to have non-
positive index. 
 
This, and Lemma 3.2 combined with Corollary 2.8, immediately imply: 
 
Corollary 3.3: If [G,x,y] is a Tutte solution, then for any α, β and [G,∆z] constructed as in (4) (and per-
turbed if necessary as described in Appendix A), no vertex or interior face is a saddle in [G,∆z]. ♦ 
 
Finally, we need to show that if the drawing [G,x,y] does not have the required properties, then there must 
be a z∈span(x,y) such that [G,∆z] has either a saddle vertex or a saddle face. The required properties of 
[G,x,y] that will make it a planar embedding are that all faces are simple, convex, and disjoint. The next 
set of definitions will formalize this. However, to proceed, we rely on the fact that there are no degenera-
cies in a Tutte solution. The following Lemma is proved in Appendix B, and we proceed under this as-
sumption. 
 
Lemma B.5: In a Tutte solution there can be no face with zero area, no edge of zero length and no angle 
of 0 or π within any interior face. ♦ 
 
Definition 3.4: A face f of G is called a convex face of [G,x,y] if its boundary is a simple strictly convex 
polygon in the plane. ♦ 
 
Definition 3.5: Consider the angles αi formed between the edges emanating from a vertex v in [G,x,y], as 
ordered by the graph topology. v is called a wheel vertex of [G,x,y] if 0<αi<π and Σαi=2π.♦ 
 
Figure 3 shows some examples of non-convex faces and vertices which are not wheels. 
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Figure 2: The generic structure of a Tutte solution, looking at the one-form which is the projection of the 
drawing along the vertical z. All vertices and faces are non-singular, except for one source and one sink on the 
boundary. Arrows mark the orientation of the half-edges possessing positive values of the one-form.A red ver-
tex in a blue face is a corner. 

source  

sink  

z 

 
Theorem 3.6: If [G,x,y] is a Tutte solution, then all interior faces of G are convex and all interior vertices 
are wheels. 
 
Proof: Suppose the face f of G is non-convex in [G,x,y]. Then there exists a line l in the plane that inter-
sects more than two edges of f. Rotate the plane using a matrix β −α⎛

⎜ ⎟
⎞

α β⎝ ⎠

 such that l is horizontal (see the 

dashed lines in Figure 3). The vector z = αx + βy represents the vertical component of the rotated draw-
ing. In the resulting [G,∆z], there must be vertices which are not corners between the edges of f that l in-
tersects. This means that the half-edges circling ∂f exhibit at least two sign changes (ignoring zero val-
ues). If ∆z is valid, then f is a saddle face in [G,∆z]. (If ∆z is invalid, then by Lemma A.5, after it is per-
turbed f is a saddle face in [G,∆z]). This contradicts Corollary 3.3. 
 
Likewise, suppose a vertex v of G is not a wheel, then there exists a line l through v in the plane that inter-
sects more than two wedges of v. An identical argument shows that with the appropriate choice of α and 
β, v becomes a saddle in [G,∆z], again contradicting Corollary 3.3. ♦ 
 
As a result of Theorem 3.6, the one-ring of faces around each interior vertex maps homeomorphically to a 
disk in the plane. (Similar reasoning shows that the “half-ring” of interior faces around each boundary 
vertex maps homeomorphically to a “half-disk”). In other words, any two adjacent faces in the drawing 
are disjoint. This is what Floater [7] calls local injectivity. The following theorem establishes also global 
injectivity, namely that any two faces in the drawing are disjoint. 
 
Theorem 3.7: All of the faces in a Tutte solution are disjoint.  
 
Proof: Each face is strictly convex in the plane, so has a well-defined orientation. By Theorem 3.6, the 
one-ring of faces around each vertex is embedded as a disk, so all of these orientations are identical. Each 
point in the plane is contained in a finite number of the convex faces – its face count. Imagine moving 
that point over the plane and tracking this face count. Because the face orientations are all identical, the 
face count does not change when the point crosses over an interior edge. The boundary is convex, hence 
simple. Hence the face count changes by 1 when passing over a boundary edge, and is 0 outside the 
boundary. It follows that the face count must be equal to 1 everywhere on the interior. ♦ 
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This concludes our proof of Tutte’s theorem. 
 

 

 
Figure 3: Illustration of Definitions 3.4 and 3.5 and proof of Theorem 3.6. The horizontal dashed lines show 
that there always exists a line that intersects a non-wheel in more than two wedges and a non-convex face in 
more than two edges. A red vertex paired with a blue face indicates a corner in the one-form which is the projec-
tion along the vertical. 

 
3.2  Multiple Non-Convex Boundaries 
 
While the scenario of Tutte's theorem requires the single boundary to be convex in order that the resulting 
drawing be a planar embedding (i.e. contain only wheel vertices and convex faces), our theory permits the 
presence of non-convex vertices (so-called reflex vertices) in the boundary. In fact, we permit the pres-
ence of multiple non-convex boundaries.  
 
We can thus think of our mesh G as a topological sphere with some faces labeled as exterior. One of these 
exterior faces will be infinite in the planar drawing, while the rest will be finite. The boundaries of these 
exterior faces will be mapped to the plane, and impose boundary conditions in the system of equations 
(3). In order to produce a correctly oriented drawing, we will require that the turning number of the 
boundary of the infinite exterior face be +2π and the turning number of the boundaries of the finite exte-
rior faces be -2π. We will also require that the reflex vertices be wheels. As we will see, these restrictions 
force the rest of the drawing to behave as well. First a few definitions: 
 
Definition 3.8: Let P be a straight line mapping of an oriented polygon to the plane, with all edges having 
positive length (but allowed to cross). The turning angle of P at vertex v is the external angle at v as one 
traverses P consistent with its orientation. This angle is positive if the turn at v is a right turn in the plane 
and negative if the turn is a left turn. The turning number of P is the sum of the turning angles at the verti-
ces of P. ♦ 
 
Definition 3.9: Let P be as above. A vertex v is called convex in P if the turning angle at v is non-
negative. Otherwise v is called reflex in P. ♦ 
 
Definition 3.10: Let P be as above. A vertex v of P is called extremum relative to a direction d in the 
plane, if the edges emanating from v all project positively onto d. ♦ 
 
Lemma 3.11: Let P be as above with turning number +2π (-2π resp.). Denote by C its set of convex ex-
trema, and by R its set of reflex extrema with respect to any direction d. Then |C|-|R|=2 (|R|-|C|=2 resp.). 
 

non-convex face
line intersects 4 edges 

wheel vertex 
line intersects 2 wedges  non-wheel vertex non-wheel vertex

line intersects 4 wedges line intersects 4 wedges

convex face 
line intersects 2 edges  non-convex face

line intersects 4 edges 
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Proof: Imagine "flattening" the polygon along direction d. Then, at the (flat) limit, the turning angle is +π 
at each v∈C, -π at every v∈R, and 0 at all other vertices. Since the total turning number is +2π (-2π resp.), 
this means that π(|C|-|R|) = 2π (π(|C|-|R|) = -2π resp.), namely |C|-|R|=2 (|R|-|C|=2 resp.). ♦ 
 
In our parameterization setting, the boundary of each exterior face is mapped to the plane. This mapping 
imposes boundary conditions on the linear system of equations (3). Under this mapping (and chosen ori-
entation for G), the turning number of each external face’s boundary is well-defined, and its vertices may 
be characterized as convex or reflex. 
 
Lemma 3.12: Suppose that: 1) G is an oriented 3-connected mesh of genus 0 having multiple exterior 
faces. 2) The boundary of the infinite exterior face is mapped to the plane with positive edge lengths and 
turning number 2π. 3) The boundaries of the finite exterior faces are mapped to the plane with positive 
edge lengths and turning number -2π. 4) [G,x,y] is the straight line drawing of G where each internal ver-
tex is positioned as a convex combination of its neighbors. 5) In [G,x,y] the reflex vertices of all of the 
exterior face boundaries are wheels. Then for any α, β and [G,∆z] constructed as in (4), no vertex or inte-
rior face is a saddle in [G,∆z].  
 
Proof: As illustrated in Figure 4, assume the N boundaries of [G,x,y] form one infinite and N-1 finite po-
lygonal exterior faces in the plane with Bi vertices each, of which Ci are convex vertices, and Ri are reflex 
vertices. Consider the one-form [G,∆z]. Since the extrema vertices of the exterior faces are all non-corners 
in those faces, the indices of the exterior faces are 1-(Ci+Ri)/2. The interior faces are closed and the inte-
rior vertices are co-closed, hence their indices are ≤ 0. Having both positive and negative values of ∆z on 
their co-boundaries, the indices of the non-extremal boundary vertices are ≤ 0. Being wheels, the indices 
of the reflex extrema are also ≤ 0. Trivially, the convex extrema have indices ≤ 1. Denote by s the sum of 
the (negative) indices of the saddle interior faces and vertices. So the sum of the indices over the entire 
mesh is ≤ Σ(1-(Ci+Ri)/2)+ ΣCi+s . But the Index Theorem maintains that this sum is +2, implying 2 ≤ 
N+Σ(Ci-Ri)/2+s. Now Lemma 3.11 implies that Σ(Ci-Ri) = 2-2(N-1) = 4-2N. This means that s ≥ 0, but 
since, by definition s ≤ 0, we conclude that s = 0, namely, saddles do not exist in the interior faces or ver-
tices. ♦ 
 
Using arguments identical to those of the previous section, we conclude: 
 
Theorem 3.13: Under the conditions of Lemma 3.12, all interior faces of [G,x,y] are convex and all verti-
ces are wheels. Moreover, if all the exterior faces are embedded as disjoint simple polygons (edge cross-
ings are not allowed), then all faces of [G,x,y] are disjoint. ♦ 
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Figure 4: The multiple non-convex boundary scenario. The 
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tain an injective 2D embedding, it suffices to force the boundary angles to be positive and close to αi, and 
compute the interior vertices' positions by solving a linear system using mean-value weights derived from 
the βi. Since αi will typically be very positive (meaning sufficiently distant from zero), this will force the 
2D boundary angles to be positive, hence the boundary vertices will be wheels, and the result an injective 
embedding. Since we do not know in advance which vertices will be reflex, we force all boundary verti-
ces to be wheels. 
 
Figure 5 shows some results of this parameterization algorithm on two 3D input meshes. The first input is 
the "ear" mesh, which is embedded as a triangulation with a non-convex boundary. Note how the 2D 
boundary has a shape very close to that of the 3D boundary and how the angles are very similar. The sec-
ond input is the "face" mesh, containing multiple boundaries ("holes"). Note that the hole corresponding 
to the "mouth" has a non-convex character in the 3D input, which is preserved in the resulting 2D embed-
ding. The third input is a hemisphere, in which three slits have been cut. The resulting 2D embedding 
takes advantage of these slits when forming the boundary for the resulting conformal parameterization. 
 
It is not clear at this point whether it is possible to satisfy the conditions of Theorem 3.13 with 2B more 
complicated, yet still linear, equations involving the boundary vertices, possibly coupling the x and y co-
ordinates (which the other balance equations do not attempt to do). An example of such equations was 
demonstrated by Desbrun et al [5], also attempting parameterization of a disk-like mesh with free bound-
ary. It is not clear whether those equations actually force the boundary vertices to be wheels, hence it is 
not obvious that the result is guaranteed to be an injective embedding. 
 

 12



 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) (f) 

Figure 5: Parameterizing a mesh with free boundaries: (a),(c),(e) Original 3D meshes. (b),(d),(f) 2D parameteriza-
tions of (a), (c) and (e) when boundaries (finite and infinite) are free but forced to have wheel vertices whose 2D 
angles are as close as possible to 3D originals. Mean-value weights were used in for the interior vertices. 
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4.  Parameterizing a Torus 
 
While our theory of one-forms on meshes allowed us to obtain Tutte's theorem for disks and extensions, it 
has a more natural application in the case of a toroidal mesh. This case is actually easier to analyze be-
cause, in its simplest form, there is no boundary to complicate matters. On the other hand, it is more diffi-
cult to envision a parameterization in this case, since the torus obviously cannot be mapped in an injective 
manner to the plane. The traditional solution to this is to cut the mesh along an artificial boundary to form 
a disk, and then parameterize as any other disk-like mesh. While this is certainly possible, cutting the 
mesh introduces new problems such as optimization of this boundary, and obvious discontinuities in the 
parameterization along the boundary. 
 
Another way to parameterize a toroidal mesh without encountering the cutting problem, is to parameterize 
it locally, meaning injectively embed any submesh with disk topology, yet in a way such that all local 
parameterizations fit together in a seamless manner. So, while we never attempt to parameterize the entire 
mesh, if two intersecting disk-like regions (whose intersection is also disk-like) are parameterized to the 
plane, the parameterization should coincide on the intersection, possibly after an appropriate translation. 
See Figure 6. One-form theory provides a way of doing this seamless local parameterization by working 
with a pair of one-forms. Each one-form provides the information needed to synthesize one of the coordi-
nate values at the vertices in the plane. As in the case of the disk, we will see that the key is to use two 
saddle-free harmonic one-forms. 
 

 

Figure 6: Seamless local parameterization of disk-like submeshes of the torus. 
 
Seamless local parameterization is important for a variety of mesh processing applications, in particular 
"cutting and pasting" between meshes, as described by Biermann et al [4], texture mapping and remesh-
ing. 
  
The basic method for seamless local parameterization was first introduced by Gu and Yau [14], using the 
same one-form concept, but they did not analyze whether this method would in fact produce a proper em-
bedding. Here, we prove, based on the Index Theorem (Theorem 2.5) that this is indeed the case. In this 
sense, this is a Tutte-like theorem for the torus. 
 
Our theorem applies to a more general case than that originally explored in [14]. Gu and Yau dealt spe-
cifically, with special conformal weights in their equation (1), only dealt with pairs of one-forms related 
by the so-called Hodge star operator, and only considered meshes with triangular faces. Our theorem ap-
plies to arbitrary positive weights, any pair of linearly independent harmonic one-forms, and applies 
meshes with arbitrary sized faces. 
 
A recent paper of Steiner and Fischer [28]  makes observations similar to ours, in particular that linearly 
independent harmonic one-forms generate locally-injective parameterizations of the torus. The proofs 
they give, however, are rather complicated. 
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As opposed to the disk case, where we considered the planar coordinates of the embedding, and then con-
verted them to a one-form to prove Tutte's theorem, in the toroidal case we start off with a one-form, and 
then synthesize the local embeddings from that. We begin with a general theorem concerning one-forms 
on higher genus meshes. This theorem is proven in [3,14,22], where it is considered a discrete analog to 
the Hodge decomposition theorem for vector fields on surfaces. The related fact that any harmonic vector 
field on a surface can be expressed as the sum of a rotation-free field and a divergence-free field is the 
basis of the vector visualization techniques of Polthier and Preuss [25] and Tong et al. [30]. 
 
Theorem 4.1 [3,14,22]: If G is a closed oriented manifold mesh of genus g, then the linear space of har-
monic one-forms wrt some set of positive weights has dimension 2g. ♦ 
 
The reader may be convinced of the correctness of Theorem 4.1 by observing the following: The rank of 
the set of equations (1) is F-1. This is despite the fact that there are F equations, since if all but one of the 
faces are closed, then this implies that the last face must be closed too. The same is true for the set of 
equations (2) – their rank is V-1. The number of unknowns is E, hence the dimension of the solution space 
is E-(V+F-2), which, by Euler's formula, is 2g.  
 
Note that Theorem 4.1 implies that the only harmonic one-form on a closed spherical mesh is the degen-
erate (all zeros) one-form. Luckily this is not the case for the disk, due to the existence of non-harmonic 
vertices along the boundary, facilitating Theorems 3.6 and 3.13. 
  
Theorem 4.1 implies that the space of harmonic one-forms on the torus is two-dimensional. Two linearly 
independent one-forms may be sampled from this space in a variety of ways. Note that the closedness of 
the one-form implies that the sum of the one-form on any edge loop enclosing a disk-like submesh will 
vanish. However, the analogous sum on any loop circling the handle of the torus will generally not van-
ish. Gu and Yau organized the space of harmonic one-forms by specifying the sums of the one-form (the 
"signatures") around loops that form a basis for the first homology group of G.  
 
The following is an analog of Lemma 3.2 for a torus: 
 
Lemma 4.2: If G is a closed manifold mesh with genus 1 and ∆z a valid harmonic one-form on G, then 
[G,∆z] has only non-singular vertices and faces. 
 
Proof: By Theorem 2.5, the sum of the indices of the vertices and faces of [G,∆z] is 0. Since all vertices 
are co-closed and all faces are closed, their indices are all non-positive. Thus the only way these indices 
can sum to zero is if they are all zero. ♦ 
 
To construct a local parameterization for the torus, we choose any two linearly independent harmonic 
one-forms, ∆x and ∆y, which are linearly independent solutions to (1) and (2) with unit weights in (1). 
Now, given a submesh with the topology of a disk, assign the coordinates (0,0) in the planar parametric 
domain to an arbitrary vertex v0 of that submesh. Any other vertex is assigned coordinates by integrating 
(summing) the one-form along a directed path from v0 to v. Since the one-form is closed, it does not mat-
ter which path is used: 
 

0 0

0 0
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( , ) (0,0)

( , ) ,
i i

i i h h
h P v v h P v v

x y
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Because the space is two-dimensional, it does not really matter which two harmonic one-forms are used, 
as long as they are independent. Any other pair of one-forms will be a linear combination of these, mean-
ing the resulting parameterizations will be related to each other by an affine transformation.  
 
We now use Lemma 4.2 to prove the analog of Theorem 3.6 for the torus: 
 
Theorem 4.3: If G is a 3-connected manifold mesh with genus 1, ∆x and ∆y two non-degenerate and line-
arly independent harmonic one-forms on G, and G' a submesh of G with the topology of a disk, then all 
faces of [G',x,y] are convex and all vertices of [G',x,y] are wheels, where x and y are constructed as in (5). 
 
Proof: Identical to the proof of Theorem 3.6, using Lemma 4.2 instead of Lemma 3.2. ♦ 
 
Note that if the method of (5) is run twice, each time with a different vertex as v0, the two resulting 
parameterizations will, by definition, be related to each other by a simple translation in the plane. The 
translation vector will be the coordinates of the second origin in the first parameterization (or vice versa).  
 
Theorem 4.3 is a statement of local injectivity. It can also be shown that a pair of harmonic one-forms, in 
fact creates a globally injective mapping from the universal cover of the torus to the entire plane. As a 
result, there can be no edge crossings in these parameterizations. The proof relies on Theorem 4.3, but 
also on some notions from algebraic topology, and is thus omitted. 
 
Figure 7 shows such an parameterization of a toroidal mesh, where the disk-like submesh is actually the 
entire mesh, after it was cut twice along two basis loops of the handle. Because of the periodicity of the 
torus, the resulting embedding can be used to tile the plane in a doubly-periodic seamless manner. 
 

 
(a) (b) (c) 

Figure 7: Parameterization of a torus containing 32 vertices and 64 faces. (a) 3D torus. (b) Parameterization of the 
torus to the plane using two harmonic one-forms generated with uniform weights. Vertices are numbered. The 
color coded edges along the boundary correspond. (c) Double periodic tiling of the plane using the drawing in (b). 

 
 
Although we will not prove this, we believe that a toroidal mesh with boundaries ("holes") may be locally 
parameterized in an injective embedding in a manner similar to that of Section 3.2, namely, by allowing 
vertices along the boundaries to be non-harmonic, as long as they have turning number -2π, and the reflex 
vertices are wheels. 
 
5.  Higher Genus 
 
While we have applied our Index Theorem (Theorem 2.5) only to the disk and to the genus 1 case to 
prove Tutte-like theorems, the theory is applicable also to higher genus meshes, except there matters are 
more complicated. By Theorem 4.1, the dimension of the space of harmonic one-forms for g>1 is at least 
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4 and so there are many fundamentally different “pairs of harmonic one forms” that can be chosen from 
the space in order to create a parameterization.  
 
In addition, for g>1, the Index Theorem implies the existence of at least two saddle vertices and/or faces 
in every such harmonic one-form. So something must go awry when we apply the parameterization ap-
proach of Section 4.  
 
As suggested by Gu and Yau [14], the “best” one can hope for is to have all of the "badness" in the 
parameterization isolated at 2g-2 vertices or faces. In this case we may have a vertex that is doubly wheel, 
where the co-boundary edges will cycle in the drawing around the vertex twice. Or we may have a face 
that is doubly convex, where the boundary edges cycle around the face twice (see third column of figure 
3).  At these bad spots, the embedding cannot be even locally injective. Note that if the mesh has only 
triangular faces, only double-wheels may occur. 
 
Here we prove that if a pair of harmonic one-forms is chosen such that it has 2g-2 such doubles, then the 
rest of the resulting parameterization is locally injective.  
 
Theorem 5.1: If G is a closed oriented 3-connected manifold mesh of genus g, and ∆x and ∆y are one-
forms on G and [G,x,y] - the corresponding drawing in the plane - contains 2g-2 vertices or faces that are 
doubly wheel/convex, then all other vertices of [G,x,y] are wheels and all faces are convex.  
 
Proof: In any projection of [G,x,y], a vertex that is doubly wheel, or face that is doubly convex, will be a 
saddle. If there are 2g-2 doubles, then the Index Theorem (Theorem 2.5) implies that there can be no 
other saddles. So all other vertices and faces are always non-singular in every projection, hence all other 
vertices must be wheels and all faces convex. ♦ 
 
Of course, since the mapping is not everywhere locally injective, it is obviously not globally injective. 
But the drawing will at least contain faces which are all oriented consistently. 
 
While we do not have a closed characterization of which two independent one-forms from the 2g-
dimensional solution space will, when used as x and y coordinates in the plane, form such an embedding, 
we can generate them using the following randomized (Las-Vegas) algorithm: 
 

1. Compute a basis of the 2g-dimensional solution space of the harmonic equations (1) and (2). 
2. Select a one-form ∆x at random from the space whose basis was computed in (1), e.g. a random 

linear combination of the basis functions. When integrated, this one-form will generate the x co-
ordinate of the embedding. 

3. Solve for another one-form ∆y such that [G,∆x,∆y] has 2g-2 “doubles”. Since ∆x has been fixed 
in step 2, this can be written as a linear program. In this program, every corner of the saddles of 
∆x is constrained to have a positive angle (i.e. positive cross product of the two one-forms at that 
corner). If it exists, this ∆y is called a mate of ∆x. 

4. If step 3 failed, goto step 2. 
 
It is easy to see that if ∆x and ∆y are mates, then any two linear combinations of ∆x and ∆y are also mates. 
Hence, in practice, it is possible to impose orthogonality of ∆x and ∆y in the linear program solved in Step 
3. 
 
We emphasize that Step 3 does indeed fail for some random choices made in Step 2, meaning there do 
exist one-forms ∆x for which there is no mate ∆y (not even the ∆y generated by applying the discrete 
Hodge star operation [14] to ∆x). However, in practice, the linear program fails to find a mate in Step 3 
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only rarely, so the algorithm usually terminates after a small number of steps. We have observed experi-
mentally, though, that this failure rate increases with the genus.  
 
The embeddings in Figure 8 were generated using this algorithm.  
 
We conclude this discussion by stating some natural questions which are left open: 
 

1. Which vertices in G can be saddles in a harmonic one-form? (We know that vertices with valence 
3 cannot be saddles, because three edges cannot generate more than 2 sign changes of the one-
form.) 

2. Which vertices in G can appear as double wheels. (We known vertices with valence ≤ 4 cannot be 
saddles since each of the four angles must be < π, yet their sum must be 4π). 

3. If a vertex can be a saddle or double wheel, how can we generate a one-form or pair of one-forms 
having this property ? 

4. Is there any natural characterization of the one-forms that have mates? 

 

 
 

 

 

Figure 8: Parameterization of the two-hole torus. Left: the 3D mesh, containing 495 triangular faces. Middle: The 
parameterization of the mesh to the plane using uniform weights. The two double-wheel vertices are marked in red 
and green. The green one appears twice along the boundary. Right: Zoom into the red double-wheel vertex. 

 
6.  Conclusion 
 
The concept of one-forms on meshes used in this paper, although simple, seems to be quite powerful. It 
unleashes a wealth of classical mathematical theory for which discrete analogs seem to exist. This is also 
related to some recent developments in polytopal graph theory [23] and planar tilings using harmonic 
functions on graphs [17]. 
 
This paper deals with the general case of asymmetric weights wij ≠ wji in (3). Many other papers (includ-
ing Tutte [31]) deal only with the symmetric case. This is appealing because then the system has a physi-
cal interpretation of a spring system, and the Tutte solution minimizes the sum of the squares of the 
weighted spring lengths, hence the system's energy. Some of the recipes for generating barycentric coor-
dinates for given embeddings yield symmetric weights, including the so-called cotangent weights [24]. 
However, most do not (e.g. the mean-value weights [9]), and it seems that the one-form theory presented 
here is powerful enough to deal with this. 
 
Theorem 3.13 raises hope for other possible applications. One of these is constrained parameterization 
(see e.g. [18]), which is of paramount importance for texture mapping, guaranteeing that key features of a 
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texture are mapped to the corresponding features on a mesh. This problem calls to embed a disk-like mesh 
in the plane, such that the parameterization is injective, but also satisfies positional constraints at a (usu-
ally small) subset of the interior vertices. The results of Section 3 indicate that if all the "problematic" 
regions of the mesh are embedded properly, then  harmonicity will take care of the rest. In the scenario of 
Section 3 – the problematic regions are the boundary vertices, which are taken care of either by forcing 
convexity or explicit wheels. This can be generalized to the case of constrained parametrization by con-
sidering the constrained vertices to also be "problematic" (or, in other words, part of a non-connected 
boundary), so it seems that forcing both the boundary vertices and the constrained vertices to be wheels 
should solve the problem. However, it remains to see how this can be done in a computationally efficient  
manner. 
 
A possible application of local parameterization of the torus is for parameterizing a disk-like mesh with a 
free boundary. Since Tutte's theorem requires a convex boundary, one common way around this is to 
"pad" the disk with a number of layers of "virtual" faces, forming a new "virtual" boundary. This larger 
mesh is embedded in the plane using the convex boundary method, and the extra padding then discarded. 
This method, due to Lee et al [20], gives the true boundary more flexibility, and it will typically end up 
being non-convex. It is, however, still influenced by the virtual boundary and the connectivity of the vir-
tual faces, hence is not artifact-free. Making use of our method for local parameterization of the torus, we 
believe it is more natural to embed the original disk within a torus, rather than a larger disk, as the torus 
seems to be the "cleanest" mesh. After solving for a harmonic one-form on the torus, this is transformed 
into an embedding of just the original disk-like submesh. This procedure eliminates boundary conditions 
entirely, hence should contain less artifacts. 
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Appendices 
 
The Appendices provide some technical theorems which simplify the main results of this paper. The theo-
rems will be formulated for the case of a mesh with a disk-like topology and convex boundary. With the 
appropriate modifications, these theorems carry over to the other cases (non-convex boundary, higher ge-
nus) as described. 
 
 
 

Appendix A: Perturbing a non-valid one-form into a valid one-form 
 
We will show how any one-form on a disk-like mesh obtained from a Tutte solution that contains vanish-
ing values may be converted into a valid one-form without changing the signs of any of the non-zero val-
ues. The resulting one-from may have non co-closed vertices. But as mentioned in Section 3, the key to 
Lemma 3.2 is that all but two of the vertices have both negative and positive values of the one-form on its 
co-boundary. This is weaker than the co-closed property. More formally: 
 
Definition A.1: A vertex (resp. face) is mixed in a one-form if has at least one positive and at least one 
negative value of the one-form on its co-boundary δv (resp. boundary ∂f). ♦ 
 
Definition A.2: A one-form is called mixed if all its vertices and faces are mixed. A one-form is called 
almost mixed if all its faces are mixed and all its vertices are mixed, with the exception of at most two 
vertices. ♦ 
 
The following key result follows as a special case of Theorem 2.2 of Linial et al. [21]: 
 
Lemma A.3: If G is a 2-connected manifold mesh <V,E,F> and s and t any two distinct vertices of G, 
then there exists a valid one-form [G,∆f], whose faces are all closed and whose vertices, (except for s, 
which is a source, and t, which is a sink), are all co-closed with respect to some set of positive edge 
weights wij.♦ 
 
Clearly such a [G,∆f] is almost mixed. 
 
Lemma A.4: Let ∆z be a one-form derived from a Tutte solution as in Section 3.1. It is possible to con-
struct a valid almost mixed one-form ∆z' such that for every e with ∆ze≠0, sign(∆ze)=sign(∆z'e). 
 
Proof: Denote by fe the outer face of the mesh. Tutte's method dictates that ∂fe is embedded as a non-
degenerate convex polygon, with no two vertices coincident. In the rotated drawing [G,w,z] (where the 
rotation is determined by α and β), the boundary loop ∂fe has vertices on its left side, and vertices on its 
right side. The left side has a top (and bottom) vertex, as does the right side. With respect to a generic 
choice of α and β, both sides share their top (and bottom) vertex with each other. With respect to some 
specific choice of α and β, the upper or lower edges may be horizontal and so the two sides may not share 
their top (or bottom) vertices. In addition, if the boundary is only weakly convex, for a specific choice of 
α and β, there may be additional “strictly top” and “strictly bottom” vertices that are strictly in between 
the left and right sides.  
 
Pick any two vertices s and t on ∂fe that are not strictly top or strictly bottom vertices. Apply Lemma A.3 
to obtain a valid almost mixed ∆f. Choose ε small enough such that adding ε∆f to ∆z will not to change 
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the signs of the non-zero values of ∆z, but, on the other hand, validates ∆z. See Fig. 9 for an illustration of 
this. 
 
Any degenerate face in ∆z is determined completely by ∆f, hence is mixed in ∆z'. Any non-degenerate 
face f is mixed in ∆z, hence for sufficiently small ε remains so in ∆z’. Hence all faces are mixed in ∆z’. 
 
The sign pattern of any degenerate vertex v in ∆z is completely determined in ∆z’ by ∆f. Since s and t 
were explicitly chosen to be non-degenerate vertices, a degenerate v cannot be one of the chosen s or t. 
Hence v must be co-closed in ∆f and thus mixed in ∆z’.  
 
Any mixed vertex in ∆z, for sufficiently small ε, must remain so in ∆z’.  
 
The only non-degenerate, not mixed vertices possible in ∆z are the extreme ones: the top-left (TL), bot-
tom-left (BL), top-right (TR), bottom-right (BR), strictly top (ST), and strictly bottom (SB) vertices. We 
now show that there cannot be more than two of these. 
 

∆z + ε∆f = ∆z’

Figure 9: Scenario 
of the one-form. Ed
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, then it can account for at most one non-mixed vertex in ∆z’. 

nct, then we use the following argument. By Lemma 3.2, there are no saddle faces 
 be only 2 sign changes as one circles ∂fe (only at s and t). Hence ∆z’ must go in one 
om left to right) along the top (resp bottom) of ∂fe. Therefore, the ST vertices and 
itive and negative values on their co-boundaries in ∆z’, hence be mixed. Thus TL 
t one non-mixed vertex. 

 shows that BL and BR can account for at most one non-mixed vertex.  ♦ 

shows that if a vertex or face was a saddle in ∆z, then it will certainly be a saddle in 
nnot be eliminated by this perturbation of ∆z. This is important for the proof of 
ld after the perturbation. 
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Lemma A.5: If there were k sign changes around ∂f (δv resp.) in ∆z, ignoring zeros, then index(f) ≤ 1-k/2 
(index(v) ≤ 1-k/2 resp.) in ∆z’. 
 
Proof: The sign of a non-degenerate edge of ∆z is preserved in ∆z'. Hence the number of sign changes 
can only increase and the index only decrease. ♦ 
 
For the non-convex boundary, in Lemma A.4, we choose for s and t any two boundary vertices that have 
at least one boundary edge with non-zero value in ∆z. The resulting perturbed one-form ∆z' will have the 
appropriate properties for Lemma 3.8 to apply. 
  
For the torus, (and higher genus) case we must assume that the one-form is not completely degenerate. 
Then in Lemma A.4, we choose any two non-degenerate vertices to be s and t. The resulting perturbed 
one-form ∆z' will have all mixed vertices and faces and thus appropriate for Lemma 4.2 (resp. Theorem 
5.1) to apply. 
 
 
 
 
 

Appendix B: No degenerate vertices or faces 
 
In this appendix we prove that a Tutte embedding does not contain degenerate elements. First we define 
what these are: 
 
Definition B.1: Let ∆z be a one-form on a mesh. A degenerate (half-)edge is one having vanishing value 
of the one-form. A degenerate face or vertex is one with all degenerate edges. A degenerate corner is one 
whose two edges are degenerate. ♦ 
 
For this Appendix we need a slightly stronger version of Lemma A.3, which also follows directly from a 
variant of the arguments in [21]. 
 
Lemma B.2: If G is a 2-connected manifold mesh <V,E,F>, s and t any two distinct vertices of G, and p 
any directed simple path from s to t, then there exists a valid one-form [G,∆f], with all positive values 
along the half-edges of p, whose faces are all closed and whose vertices, (except for s, which is a source, 
and t, which is a sink), are all co-closed with respect to some set of positive edge weights wij. ♦ 
 
We now prove a series of lemmas leading to the desired result. 
 
Lemma B.3: Let [G,x,y] be a Tutte solution. Then in any projected one-form [G,∆z] there can be no non-
degenerate interior vertex participating in a degenerate corner. 
 
Proof: Let v0 be an interior vertex. Since it is non-degenerate, it must be mixed. We wish to show that if it 
participates in a degenerate corner, then we can find ∆z’ - an appropriate perturbation of ∆z of the form 
described in Lemma A.4 - which is a valid almost mixed one-form with a saddle at v0. This would contra-
dict Lemma 3.2. 
 
Call the two edges of the degenerate corner e01, e02. These edges connect v0 to v1 and v2. Since G is 3-
connected, the graph G-{v0} is 2-connected. Therefore for any two vertices s and t we can find two ver-
tex-disjoint paths connecting v1 and v2 to s and t (we cannot say in advance which will be connected to 
which) such that v0 is not in either path [21]. By including all of the edges in these two paths in addition 
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to the edges e01 and e02, we obtain a simple directed path from s to t that proceeds in the order [v1,v0,v2] or 
[v2,v0,v1]. See Fig. 10. By Lemma B.2, there exists ∆f: a valid almost mixed one-form with source s and 
sink t that either passes in order [v1,v0,v2] or [v2,v0,v1]. Consider ∆z’=∆z+ε∆f. This is a valid almost-mixed 
one-form with valid values on the edges e01 and e02. With the proper choice of sign for ε, we can increases 
the number of sign changes around v0, creating a saddle at v0 in ∆z’. This contradicts Lemma 3.2. ♦ 
 
 

 
Figure 10: Scenario of Theorem B.3. Arrows mark the orientation of the half-edges possessing positive values 
of the one-form. Edges without arrows have invalid (zero) values. 

 
Next we show that if there was any degenerate corner at an interior face, there would have to be some 
degenerate corner with a participating non-degenerate vertex. 
 
Lemma B.4: Let [G,x,y] be a Tutte solution. Then in any projected one-form [G,∆z] there can be no de-
generate corner at an interior face. 
 
Proof: Assume (v0,f) is a degenerate corner. If it is not part of a triangle (which would have to be degen-
erate by closedness), then introduce a new edge e12 between vertices v1 and v2 (the neighbors of v0 at the 
degenerate corner); this splits f into a degenerate triangle and some remainder face. This face-split opera-
tion cannot change the 3-connectedness of G. The addition of this edge cannot change the co-closedness 
of v1 and v2. Repeat this operation for any degenerate corner. In the final G, any interior face with a de-
generate corner must be a degenerate triangle. 
 
Since [G,x,y] is not degenerate, there must be some interior face f that is not degenerate sharing an edge 
e01, between vertices v0 and v1, with a degenerate face. Either v0 or v1 must be an interior vertex, otherwise 
e01 would be an interior edge connecting two boundary vertices, which is impossible in a 3-connected 
planar graph.  
 
WLOG, v0 is an interior vertex. f has another vertex - v3 - that shares an edge e03 with v0. The one-form 
must be valid on this edge, otherwise e01 and e03 would have been a degenerate corner and f would have 
been a degenerate triangle. See Fig. 11. So v0 is an interior non-degenerate vertex at a degenerate corner, 
in contradiction of Lemma B.3. ♦ 
 
Lemma B.5: In a Tutte solution there can be no face with zero area and no edge of zero length and no 
angle of 0 or π within any interior face. 
 
Proof: Suppose there was a face with zero area. It is then possible to pick a projection (α,β) such that the 
resulting one-form vanishes on all edges of this face. Similarly, if there is an edge e with zero length, then 
pick (α,β) such that the resulting one-form will vanish on one of the edges neighboring on e. In both 
cases, we will have a degenerate corner in the one-form, in contradiction of Lemma B.4 ♦ 
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The proofs of Appendix B apply directly to the non-convex boundary case of Theorem 3.13. They also 
apply directly to one-forms on the torus. The equivalent to Lemma B.4 for the torus will state that in any 
(not completely degenerate) harmonic one-form [G,∆z], there can be no degenerate corner. This implies 
no geometric degeneraces in any drawing [G’,x,y] integrated from a pair of non-degenerate harmonic one-
forms. 
 
Harmonic one-forms on higher genus meshes have saddle vertices or faces and are thus more compli-
cated. In this case there will exist one-forms [G,∆z] with degenerate corners. But, in the special cases 
treated by Theorem 5.1, the saddles are all “accounted for”, so again, no degenerate corners can exist. 
 

Figure 11: The scenario of Lemma B.4. 
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