
A New Algorithm for View-Dependent Optimization of
Terrain with

Sub-Linear Time CPU Processing

Yuanchen Zhu

TR-07-08

Computer Science Group
Harvard University

Cambridge, Massachusetts

1

A New Algorithm for View-Dependent Optimization
of Terrain with Sub-Linear Time CPU Processing

Yuanchen Zhu,Student Member, IEEE Computer Society

Abstract— This paper presents new schemes for view-
dependent continuous level-of-detail (LOD) rendering of
terrain which update output meshes with sub-linear CPU
processing.

We use adirected acyclic graph (DAG) abstraction for
the longest-edge-bisection based multiresolution model.
The other component of our refinement framework is
the saturated monotonic perspective-division based error
function. We made the critical observation that, for a
vertex, the difference between the reciprocals of this
particular error function for two different viewpoints is
bounded by the distance between the two viewpoints, times
a per-vertex constant. We call this thebounded variation
property.

Utilizing this property, we introduce the distance deferral
table, a circular array based structure that schedules
deferred processing of DAG vertices according to viewpoint
motion. We then use the distance deferral table to opti-
mize the traditional threshold-based refinement algorithm
and the dual-queue constrained optimization algorithm to
allow sub-linear CPU run-time.

Index Terms— Viewing algorithms, virtual reality, visu-
alization techniques and methodologies, terrain visualiza-
tion, continuous level-of-detail, view-dependent optimiza-
tion, deferred processing, multiresolution representation

I. INTRODUCTION

REAL-TIME visualization of large-scale terrain
models is at the core of display systems for many

interactive applications including flight simulators, geo-
graphic information systems, and electronic games with
vast outdoor environments. To accommodate the large
geometry complexity of typical terrains while still main-
taining high frame-rates, algorithms for view-dependent
level-of-detail (LOD) triangulation of terrain are needed.

Typical terrain models have both relatively rough and
flat neighborhoods. Moreover, distant areas affect the
quality of screen image less than nearby areas due
to perspective projection. View-dependent terrain LOD
schemes take both into account and provide different tes-
sellation levels for different parts of the terrain. This also
means that the terrain has to be dynamically triangulated
at run-time, since the distance from the viewpoint to a
section of the terrain changes as the viewpoint moves.

This paper presents a new method for performing view-
dependent LOD triangulation of terrains which, most
notably, is capable of updating the triangulation in sub-
linear CPU run-time. While our work is currently only
specified for the longest-edge-bisection based multires-
olution representation, it should be straight forward to
adapt it to view-dependent refinement of other multireso-
lution representations that are based on selecting a subset
from a pool of LOD nodes.

At the core of the new method is the observation
that for the commonly used view-dependent error metric,
based on the quotient between a constant (often a view-
independent measure of error) and the distance between
the viewpoint and the point in question, there exists a
constant on the fluctuation of the reciprocal of the metric
over the distance traveled by the viewpoint. We do note,
however, that our scheme is dependent on this property
and, hence, restricts the class of error functions that can
be used. In practice, however, a lot of the recent methods,
such as [1]–[4], use this kind of error function.

The following are the specific contributions of our
work.

• Dual-table thresholding. A simple and robust al-
gorithm for thresholding based view-dependent-
refinement which has sub-linear CPU run-time is
presented. In comparison, existing schemes need to
evaluate the error function for all potential valid
refinement and is, hence, output sensitive.

• Dual-queue constrained optimization. An optimiza-
tion to the classic binary heap allows the classic
dual-queue refinement algorithm proposed in [5] to
operate inO(m + ∆n log n) time, wheren is the
output size,m ≪ n is a factor dependent on the
current speed of the viewpoint, and∆n ≪ n is the
difference between the output of successive frames.
In comparison, the classic dual-queue scheme still
needs to evaluate the error function for all entries in
the priority queues and, hence, runs in linear time.

• Distance deferral table. We propose thedistance
deferral table which is capable of exploiting the
bounded variation property of the error function.
The scheme is very general and can be used to
accelerate other refinement schemes. One example

2

is the bucket queue[6] based implementation of
the dual-queue algorithm, which removes thelog n
factor from the running time. The minimal distance
that the viewpoint needs to travel before the vertex
switches buckets can be used as the index of the
vertex within the distance deferral table.

In addition, our implementation leverages existing
techniques such asaggregated LOD handlingand
caching on the graphics memory of [2] to improve
performance.

II. RELATED WORK

View-dependent level-of-detail algorithms usually de-
compose the input model into a multiresolution repre-
sentation and then, at run time, extract the appropriate
details to include in the view-dependent reconstruction of
the original model. In this section, we summarize some
of the recent works and focus on different multireso-
lution representations and algorithms for choosing the
appropriate details.

A. Multiresolution Representation

Triangular irregular networks. Much of the earlier
works on terrain LOD algorithms have concentrated on
discrete multiresolutiontriangulated irregular networks
(TIN) modeling. Several versions of the same landscape
tessellated to different detail levels are produced with
expensive off-line preprocessing and stored in some
way. During run-time, they are dynamically combined to
provide different tessellation levels for different areasof
the terrain. Examples are [7]–[9]. For these schemes, re-
finement and simplification are relatively coarse grained,
but the required CPU work is also minimized, as each
LOD operation affects a cluster of triangles instead of
an individual triangle.

Longest-edge-bisection.For terrain, Duchaineau et
al. [5] have proposed using thebinary triangle tree,
based on thelongest-edge-bisectionoperation, as the
base of refinement framework. A lot of recent work,
such as [1]–[3], [10], also uses this representation. The
resultant triangulation is calledright-triangular irregular
networkby Evans et al. [11]. Initially a square domain is
covered by two right triangle that joins at the hypotenuse.
A Longest-edge-bisection repeatedly bisects the shared
hypotenuse of a pair of triangles, and a right-triangular
mesh of variable resolution can be created this way.
Due to the regular nature of such a hierarchy, this
multiresolution representation is particularly easy and
efficient to implement.

Progressive mesh.Hoppe [12] has presented thepro-
gressive mesh(PM) structure that represents an arbitrary

input mesh as a coarse base mesh and a sequence
of vertex splitsoperations which are inverse ofedge
collapses. Earlier work by El-Sana and Varshney [13]
and later work by Kim and Lee [14] use the same edge
collapse operation, but have different condition for inter-
dependency among the vertex splits. View-dependent
selective refinement can also be performed [13]–[15].
Hoppe has also adapted his system to terrain render-
ing [16], although the flexibility offered by irregular
mesh refinement also makes implementing PM slightly
more cumbersome and less efficient than longest-edge-
bisection based schemes.

Hybrid representation. A common problem with im-
plementing longest-edge-bisection and progressive mesh
based view-dependent algorithms is that these schemes
have become increasingly CPU bound and, hence, inef-
ficient in the face of modern graphics hardware. Several
hybrid schemes that combine two types of multires-
olution representation have been recently proposed to
combat this problem. Pomeranz [10] and Levenberg [2]
have both suggested staying within the longest-edge-
bisection framework, but using triangle patches in place
of individual triangles in the binary triangle tree of
[5]. Cignoni et al. [3] go one step further and replace
individual triangles with precomputed TINs that agree
on bisection boundary. Yoon et al. [17] use acluster
hierarchysimilar to to Erikson et al.’shierarchical LOD
[18] to represent the original model, but store each node
in the hierarchy as an individually refined PM. Finally,
Zhu [19] employs the view-dependent PM refinement
framework, but replaces each triangle in the PM re-
construction with a uniform triangle patch generated
through remeshing using a precomputed parametrization.
A common attribute of all of these schemes is that they
use a relatively elaborate multiresolution representation
at the macro-level and a much simpler representation
at the micro-level. This allows compromise to be made
between the fine-grainedness of the LOD adjustments
and the required CPU processing time. Also the corre-
sponding micro level representations usually allow more
efficient hardware rendering due to improved batching
and graphics hardware cache utilization. Our proposed
schemes are well suited for handling the micro level
refinement.

B. Refinement Algorithm

Top-down refinement.Many previous works includ-
ing [1], [3], [20], [21] use a top-down refinement scheme.
In particular, Lindstrom and Pascucci [1] employ a sim-
ple and stateless one-pass top-down traverse to triangu-
late the terrain. The benefit of such top-down approaches

3

is the ease of implementation. However, in the case of
[1], [20], [21], the entire triangulation is regenerated for
each frame, which requires CPU processing time linear
in the size of the rendered mesh. Even in [3] where
the final rendered mesh is cached between frames and
only modified mesh parts are uploaded to the graphics
memory, the top-down traverse still has a linear running
time due to the need to calculate the error function
for each node in the refinement hierarchy. However,
aggregated LOD handling, as used in [2], [3], [10],
can reduce the constant factor in the linear term by an
arbitrary factor, although this comes at a price of coarser
LOD adjustment.

Frame-coherent refinement. For arbitrary meshes,
Hoppe [15] maintains anactive vertex frontand moves
part of the front up or down the PM vertex hierarchy,
which corresponds to performingedge collapsesand
vertex splitson the mesh. For terrain, Duchaineau et
al. [5] use two priority queues to drive incremental
refinement and simplification in theirreal-time optimally
adapting meshes(ROAM) algorithm. Both Hoppe’s and
Duchaineau et al.’s schemes only perform the required
refinement and simplification operations per frame. How-
ever, to ensure correctness, in both cases the view-
dependent error function needs to be evaluated for each
node in the vertex front or the priority queues. This again
causes the total running time to be linear in the size of
the output mesh.

Sub-linear time CPU processing.Amortization, ini-
tially proposed by Hoppe [15], is the most basic tech-
nique to further reduce the linear running time of view-
dependent refinement algorithms. Instead of evaluating
the error function for all nodes, only a small portion of
them are processed for each frame. The running time is
thus reduced accordingly. However, since many potential
refinement and simplification operations are ignored for
each frame, the resulting output mesh is also sub-optimal
for a given frame. More recent work by El-sana and
Bachmat [22] prioritizes this amortization process so that
nodes with higherenergyare traversed more often, where
the energy of a node is proportional to its closeness to the
viewpoint. Compared with our scheme, the energy based
scheme is more general but only provides a rough hint,
so mesh sub-optimality can still occur. The authors of the
ROAM algorithm [5] also propose using a bound of the
screen-distortion priority over time. In comparison, our
scheme uses a bound over viewpoint motion. ROAM’s
approach is somewhat indirect in that they suggest using
an upper bound of viewpoint speed and using it to
calculate the priority fluctuation bound over time. On
the other hand, we are able to directly derive a priority
fluctuation bound over viewpoint speed. This results in

improved robustness and efficiency since the viewpoint
is not always moving at the highest speed. To our
knowledge, currently no publicly available implementa-
tion of the ROAM algorithm actually uses the deferred
priority computation scheme proposed in [5]. Finally,
Zhu [23] has presented a similar circular array based
scheme as ours, but his scheme requires the screen-space
error threshold to be fixed during processing. Although
a method for dynamically adjusting the output mesh
complexity is provided, it is not really correct in the
sense that the adjustment causes different screen-space
error thresholds to be used for different nodes.

III. OVERVIEW

In the rest of this paper, we explain the various parts
of our algorithm: the basic refinement framework, the
dual-table refinement algorithm, and the dual-priority
refinement algorithm.

Our refinement framework is based on the commonly
used longest-edge-bisectionoperation (Section IV-A).
For simplicity and easier adaption to other multireso-
lution representation, we use itsdirected acyclic graph
abstraction (Section IV-B) to describe our schemes. The
other component of the refinement framework is the
error function (Section IV-C), which serves as the guide
for adaptive refinement. In our work, we use Lindstrom
and Pascucci’s isotropic error function [1] since it is
the straight-forward saturation of the basic perspective-
division error function. This error function satisfies a
special property that allows a significant optimization
to be made, which we will discuss in Section V-B. In
Section V-A and Section VI-A, we review the basic
algorithm for performingthresholdingand constrained
optimizationbased adaptive refinement, which, unfortu-
nately, have output sensitive running time. Then in Sec-
tion V-C and Section VI-B, we present the optimization
that allows these two schemes to achieve sub-linear CPU
run-time, utilizing what we call thedistance deferral
table. Finally in Section VII, we present empirical results
and discussions of our current implementation of the
presented algorithms.

IV. REFINEMENT FRAMEWORK

A. Longest-Edge-Bisection

At the base of our refinement algorithm is the com-
monly usedlongest-edge-bisectionoperator (see Fig. 1),
which can be used to partition a unit square into right
isosceles triangles of various resolution. Initially, the
domain is covered by a pair of right triangles separated
by the main diagonal of the square. Each successive
longest-edge-bisection then picks a pair of right triangles

4

that share one edge as their hypotenuses (or a single
triangle if its hypotenuse is on the boundary), and bisects
this edge to create four (or two in the boundary case)
smaller right triangles. Such paired triangles are called
diamonds, and each diamond can be uniquely identified
by the new vertex formed by the bisection. The inverse
of longest-edge-bisection is simply adiamond merge,
which is also illustrated in Fig. 1

longest−edge−bisection

diamond merge

Fig. 1. Longest-edge-bisection and its inverse operation.

As each bisection takes place, a diamond formed
by two triangles is replaced by four smaller triangles,
which themselves are parts of smaller diamonds. This
induces a dependency relationship between diamonds.
This dependency is illustrated in Fig. 2, which represents
diamonds by the corresponding vertices. A diamond
cannot be bisected until the diamonds it depends on have
been bisected, in which case we say that the bisection
associated with the diamond is alegal refinement. Simi-
larly, a bisected diamond cannot be merged until all the
smaller diamonds depending on it have been merged, in
which case we say that the corresponding merge is a
legal simplification. If a set of diamonds satisfy that, for
each diamond in it, all of the diamonds it depend on also
belong to the set, then we say that the set islegal.

Fig. 2. Dependency between diamonds. Diamonds are represented
by the corresponding vertices.

Intuitively we can overlay the initial unit square onto a
2n + 1 by 2n + 1 rectangular vertex grid. Each diamond
is then uniquely associated with a vertex entry in the
grid. If we start with one diamond covering the entire
grid and repeatedly perform longest-edge-bisections until
all diamonds that have corresponding grid vertices have
been bisected, then the mesh we arrive at represents the
vertex grid triangulated at full resolution. LetM be the

set of all these diamonds. Then ifS ⊂ M is legal, then
it corresponds to a simplification of the initial grid, and
we say thatS is a legal reconstruction. Clearly, the set
M together with the diamond dependency thus gives us
a multiresolution representation of the initial vertex grid.

B. DAG Abstraction

The longest-edge-bisection based multiresolution rep-
resentation can be conveniently abstracted by a directed
acyclic graph,G = (V,E), where V is the vertex
set andE is the edge set. The vertices of the DAG
correspond to the diamonds and the edges correspond
to the dependencies between the diamonds. To simplify
notation, for a subsetS ⊂ V , we define⌊S⌋ = {u ∈
V : ∃v ∈ S s.t. (u, v) ∈ E} and ⌈S⌉ = {u ∈ V :
∃v ∈ S s.t. (v, u) ∈ E}. Also, if v ∈ V , then we write
⌊v⌋ = ⌈{v}⌉ and⌊v⌋ = ⌊{v}⌋.

Using these notations, a legal reconstruction of the
longest-edge-bisection multiresolution representationis
a DAG vertex subsetR ⊂ V satisfying ⌊R⌋ ⊂ R. A
legal simplification operation then removes one vertex
from R while maintaining the legality ofR. It follows
that only a vertex inR − ⌊R⌋ can be legally removed,
because all other vertices inR have descendant vertices
that are still inR. We denote this subset ofR as R−,
and call it thesimplification candidates. Likewise, for a
legal refinement operation, only vertices inRC − ⌈RC⌉
(whereRC = V − R) can be removed. We denote this
subset asR+, and name it therefinement candidates.

We will present the rest of our work using the above
abstraction and revert to triangles and diamonds only
when necessary.

C. Error Function

In typical top-down refinement, the application starts
with the coarsest reconstruction, containing only the
DAG vertex corresponding to the top most diamond, and
repeatedly choose one vertex from the current refinement
candidates to add to the current reconstruction, until
some kind of accuracy or complexity threshold is met.

A view-dependent refinement algorithm needs to de-
cide exactly which vertex to refine from the set of
refinement candidates for each refinement step, as well
as which vertex to simplify from the set of simplification
candidates for each simplification step. These decisions
are usually guided by a view-dependent error function,
ǫ(v, e), wherev is the vertex in question ande is the
viewpoint. For a given viewpoint, the error function
assigns to each DAG vertex a number that estimates the
relative viewing error introduced if the reconstruction
doesn’t include the corresponding vertex. Vertices with

5

greater errors should be included in the final recon-
struction before those with smaller errors. Also, for any
vertex in a legal reconstruction, all its ancestor vertices
should also be in the reconstruction. Hence it is natural
to require the error function to bemonotonic, i.e., for
an arbitrary viewpointe, the error function satisfies
ǫ(u, e) ≥ ǫ(v, e) for all (u, v) ∈ E.

The most commonly used view-dependent error metric
is based on perspective projection. Each vertexv is
associated with a reference pointpv ∈ R3 and a view-
independent error measurementξv. The view-dependent
error is then approximated byξv/‖pv − e‖. In gen-
eral, however, this error function does not satisfy the
monotonicity requirement. Pajarola [21] has proposed
saturating the view-independent error while Lindstrom
and Pascucci [1] uses a bounding sphere hierarchy to
saturate the view-dependent error: to each vertexv,
a bounding sphere of radiusrv is assigned such that
B(pv, rv) ⊂ B(pu, ru) for any (u, v) ∈ E, where
B(pv, rv) denotes the ball with radiusrv centered atpv.
The view-independent error is also propagated such that
ξu ≥ ξv for any edge(u, v). The error function which
satisfies the monotonicity requirement is now defined as:

ǫ(v, e) =







ξv

‖pv − e‖ − rv

e 6∈ B(pv, rv)

+∞ e ∈ B(pv, rv)
(1)

For reasons that will become clear later, in our ap-
plication, instead of using the above error function as
is, we use its reciprocal. We write the new function as
κ(v, e) and call it thepriority function. In practice, this
means that vertices withsmaller priority values should
be included in the reconstruction. The new function is
now

κ(v, e) =







1

ξv

(‖pv − e‖ − rv) e 6∈ B(pv, rv)

0 e ∈ B(pv, rv)
(2)

V. THRESHOLD BASED ADAPTIVE REFINEMENT

A. Dual-Set Refinement

The most basic form of adaptive refinement is based
on thresholding. The application defines a threshold
priority value µ that governs the minimally allowed
priority values. All vertices with higher priority values
are discarded from the reconstruction, so the desired
view-dependent reconstruction is specified by{v ∈ V :
κ(v, e) ≤ µ}. Note that it is more customary to specify
a screen-space threshold errorτ and letµ = 1/τ . For
a vertexv and a viewpointe, we say thatv is enabled
if v is included in the reconstruction, and disabled if
otherwise.

Utilizing temporal coherence, a basic implementation
can maintain the current reconstructionR, the simplifi-
cation candidatesR−, and the refinement candidatesR+.
For each frame, we perform refinements and simplifica-
tions onR using vertices fromR− andR+.

Unfortunately, the algorithm still needs to evaluate the
priority function for at least every vertex inR− andR+

in order to decide which vertices to add or remove. Due
to the regular hierarchical nature of the DAG, both|R−|
and|R+| are on the order ofO(|R|). Hence the algorithm
still requires output-sensitive running time, although the
number of actual refinement or simplification operations
performed indeed only depends on the difference be-
tween the output of consecutive frames.

B. Bounded Variation of Priority Function

We now make the crucial observation that for a vertex
v and two different viewpointse, e′ 6∈ B(pv, rv),

|κ(v, e) − κ(v, e′)| =
1

ξv

∣

∣‖pv − e‖ − ‖pv − e′‖
∣

∣

≤ ‖e − e′‖/ξv,

(3)

Also, even if any of the two viewpoints is inB(pv, rv),
(3) is still satisfied. The in-equation thus implies that, as
the viewpoint travels through space, the fluctuation of the
priority of a vertex is bounded by the distance traveled
by the viewpoint divided by the constantξv. We say that
such a priority function is ofbounded variation.

Suppose the vertexv is enabled for viewpointe′. Then
a necessary condition on the viewpointe for which v is
disabled is

κ(v, e) > µ ⇒ κ(v, e) − κ(v, e′) > µ − κ(v, e′)

⇒
∣

∣κ(v, e) − κ(v, e′)
∣

∣ > µ − κ(v, e′)

⇒ ‖e − e′‖ > ξv(µ − κ(v, e′)).

(4)

Similarly, supposev is disabled for viewpointe′. If it is
to be enabled, the new viewpointe satisfies

‖e − e′‖ ≥ ξv(κ(v, e′) − µ). (5)

Combining (4) and (5), we observe that a vertex can
toggle its status only when the distance between the new
viewpointe and the old viewpointe′ satisfies‖e−e′‖ >
ξv |κ(v, e) − µ|. Moreover, suppose the viewpoint is at
e0 in frame0 and moves toe1, e2, e3, . . . in the following
frames. If the vertex toggles its status in framen, then

ξv |κ(v, e0) − µ| ≤ ‖e0 − en‖

≤ ‖e0 − e1‖ + . . . + ‖en+1 − en‖.
(6)

In other words, whenever we calculateκ(v, e) and either
include or excludev in R, we know that the status

6

of the vertex will not change until the total length of
the poly-line formed by the viewpoint in the following
frames becomes greater thanξv |κ(v, e) − µ|. Thus we
can safely defer the processing ofv until then.

C. Implementation Using Distance Deferral Table

The bounded variation property of the priority func-
tion admits a particular simple and robust thresholding
algorithm with sub-linear CPU run-time. We exploit this
property through a circular array, which we call the
distance deferral table. Suppose the array isT and
has |T | entries. We associate with it a head pointer
HEAD(T) ∈ {0 . . . |T | − 1} and a maximal range
parameterdT . The entries in the array are buckets of
vertices. The algorithm maintainsR− and R+ as two
distance deferral tables. For each frame, suppose that
the viewpoint from the last frame ise′ and the current
viewpoint is e. The head pointer is then increased by
1 + ⌊(|T | − 1) clamp(‖e′ − e‖/dT , 0, 1)⌋ and possibly
wrapped around. Only vertices belonging to the buck-
ets covered by the movement of the head pointer are
taken out and processed. To insert a vertexv into the
table, we linearly discretize the minimal distance that
the viewpoint needs to travel into the integral index
⌊(|T | − 1) clamp(ξv |κ(v, e) − µ| /dT , 0, 1)⌋. This index
(offseted by HEAD(T)) gives the final bucket thatv will
be added into. The complete pseudo-code is listed in
Table I.

The distance deferral table scheme can also be modi-
fied to allow “lagged-behind” processing. When the user
is moving very fast, the amount of evaluation needed
increases. However, to satisfy strict frame-rates, we can
stop processing when the allotted time is to expire. This
is achieved by only advancing HEAD(T) by one entry
at a time and performing the required processing. This
is repeated for1 + ⌊(|T | − 1) clamp(‖e′ − e‖/dT , 0, 1)⌋
steps, or until the alloted time expires. Note that the same
philosophy lies behind ROAM’sprogressive optimization
[5].

D. Culling

To further improve the rendering performance, it is
often customary to incorporate a “cull” factor into the
priority function. If the block of geometry correspond-
ing to a DAG vertex is outside of the view frustum
or occluded by some other geometry (e.g., using the
algorithm in [24]), then the priority value of that vertex
should be set to∞. This, of course, will break the
bounded variation property. Hence, at the start of the
frame, our algorithm performs a hierarchical traverse of
the current reconstruction, similar to the one performed

TABLE I

OPTIMIZED THRESHOLDING ALGORITHM

UPDATE-TABLE(T, l)
1 n← 1 + ⌊(|T | − 1) clamp(l/dT , 0, 1)⌋
2 S ←

S

n−1

i=0
T [HEAD(T) + i mod |T |]

3 ClearT [HEAD(T) + i mod |T |] for i = 0 . . . n− 1
4 HEAD(T)← HEAD(T) + n mod |T |
5 return S

PUSH-TABLE(T, v, l)
1 i← HEAD(T) + ⌊(|T | − 1) clamp(l/dT , 0, 1)⌋ mod |T |
2 T [i]← T [i] ∪ {v}

THRESHOLD-OPTIMIZE(R, TI , TO, e′, e)
1 SI ← UPDATE-TABLE(TI , ‖e

′ − e‖)
2 SO ← UPDATE-TABLE(TO, ‖e′ − e‖)
3 while SI 6= ∅ do
4 v ← POP-SET(SI)
5 if κ(v, e) > µ then
6 SIMPLIFY(R, v)
7 Remove vertices in⌈v⌉ from TI

8 SI ← SI ∪ {u ∈ ⌊v⌋ : ⌈u⌉ ⊂ V −R}
9 PUSH-TABLE(TO, v, ξv |κ(v, e)− µ|)

10 else
11 PUSH-TABLE(TI , v, ξv |κ(v, e)− µ|)
12 while SO 6= ∅ do
13 v ← POP-SET(SO)
14 if κ(v, e) ≤ µ then
15 REFINE(R, v)
16 Remove vertices in⌊v⌋ from TO

17 SO ← SO ∪ {u ∈ ⌈v⌉ : ⌊u⌋ ⊂ R}
18 PUSH-TABLE(TI , v, ξv |κ(v, e)− µ|)
19 else
20 PUSH-TABLE(TO, v, ξv |κ(v, e)− µ|)

in [5] and [1]: If a previous unculled vertex is culled,
then all vertices depending on it are removed from the
reconstruction. If a previously culled vertex is unculled,
then we add it to the setSo in Table I. If a previously
completely unculled vertex is still completely unculled,
we stop the recursive traverse for all vertices depending
on it. Otherwise, we continue the recursive traversal.

VI. CONSTRAINED OPTIMAL REFINEMENT

A. Dual-Queue Refinement

Sometimes the application may want to place a con-
straint on the maximal complexity of the view-dependent
reconstruction. A complexity functionσ(v) ≥ 0 is
defined such that, given the vertexv, σ(v) describes
its complexity. For simplicity we also writeσ(S) =
∑

v∈S
σ(v) for a subsetS ∈ V . Given a target com-

plexity constraintλ, the desired simplification is then
one of the subsetsR satisfyingǫ(u, e) ≥ ǫ(v, e) for any
v ⊂ R, u ∈ RC and σ(R) + σ(u) > λ where u is
the vertex inS+ with the smalled priority value, i.e.,
we stop refinement when the reconstruction is about to

7

exceed the complexity constraint. In practice,σ(v) can
be set to the number of triangles that will be added to the
reconstruction ifv is refined, andλ to the target triangle
budget.

Duchaineau et al. [5] have proposed a general op-
timization framework based on dual priority-queues.
Strictly speaking, only vertices inR− and R+ should
be maintained, so only these two sets need to be kept in
the queue. However, the algorithm still faces the same
problem as the thresholding based adaptive refinement
algorithm. In order to determine the refinement candidate
with the greatest priority and the simplification candidate
with the smallest priority, the priority function needs
to be evaluated for all vertices inR− and R+. In this
section we present an optimization to the basic binary-
heap based priority queue implementation that achieves
sub-linear CPU running time.

B. Distance Deferral Heap

Similar to the case of thresholding based adaptive
refinement, we want to defer as much of the processing
as possible. Recall that a binary heap is a complete
binary tree satisfying that the priority of a parent node
is always equal to or smaller (or greater for a maximal
heap) than that of its child nodes. The bulk of the
processing involved is due to evaluation of the priority
function for all vertices inR− andR+ and the possible
sifting (to ensure heap property) afterward. As long as
the heap property is maintained, the nodes with smallest
priority value can be pulled out in logarithmic time.

A necessary condition for violating the heap property
is that, for an edge of the binary heap, (1) either of the
two ends changes its position in the heap, or (2) the
total priority fluctuation of the vertices at the two ends
surpasses their difference in priority.

To check for the first condition, we perform heap
operations such as HEAPIFY, ENQUEUE, and DEQUEUE

as usual, but also maintain a vertex setM which is
initially set to ∅ at the start of the frame. Whenever a
heap operation changes the position of a vertex within
the binary hierarchy, we add it toM .

To check for the second condition, we keep a reference
of all non-leaf vertices inside a distance deferral table
as presented in Section V-C. To calculate the relative
index of the vertex within the table, we note that for two
verticesu, v, and viewpointe′ s.t.κ(u, e′) < κ(v, e′), in
order to reverse their priority, the new viewpointe must

satisfy

κ(u, e) − κ(v, e) ≥ 0

⇒ (κ(u, e) − κ(u, e′)) + (κ(v, e′) − κ(v, e)) ≥

κ(v, e′) − κ(u, e′)

⇒ ‖e − e′‖/ξu + ‖e − e′‖/ξv ≥ κ(v, e′) − κ(u, e′)

⇒ ‖e − e′‖ ≥
ξuξv

ξu + ξv

(κ(v, e′) − κ(u, e′))

(7)

We write SAFE-DIST(u, v, e) = ξuξv(κ(v, e′) −
κ(u, e′))/(ξu + ξv). At the start of each frame, we use
UPDATE-TABLE on our distance deferral table,T , to get
the list of vertices that require sifting. Then we perform
usual heap operations and also maintainM . At the end of
frame, we move all parent vertices inM into theT using
the smaller of the vertex’s SAFE-DIST with respect to
its two child vertices as the argument to PUSH-TABLE .
The pseudo-code is listed in Table II.

TABLE II

DISTANCE DEFERRAL HEAP ALGORITHM.

MARK-PATH(Q, i0, i1, T, M)
1 for each v in the path betweenQ[i0] andQ[i1] do
2 T ← T − {v}, M ←M ∪ {v}

ENQUEUE(Q, v, T, M)
1 Appendv to Q and siftv up as required
2 MARK-PATH(Q, HEAP-INDEX(Q, v), |Q| − 1, T, M)

DEQUEUE(Q,v, T, M)
1 u← POP-BACK(Q)
2 Removev from T or M
3 if u 6= v then
4 i← HEAP-INDEX(Q, v)
5 SetQ[i]← u and siftu up/down as required
6 MARK-PATH(Q, HEAP-INDEX(Q, u), i, T, M)

HEAPIFY(Q,T, l, M)
1 S ← UPDATE-TABLE(T, l)
2 while S 6= ∅ do
3 Pick av ∈ S with the maximal tree depth
4 i← HEAP-INDEX(Q, v)
5 Sift v down in Q as required
6 MARK-PATH(Q, i, HEAP-INDEX(Q,v), T, M)
7 S ← S − {v}
8 if i 6= HEAP-INDEX(Q,v) then
9 S ← S ∪ {HEAP-PARENT(v)}

Notice that the arguments to MARK-PATH , i0 and i1,
must have an ancestor-descendant relationship. Hence
the queue index of vertices along the tree path fromi1
to i0 can be calculated simply by shifting. This requires
O(log n) running time, wheren is the size of the heap.
Hence both ENQUEUE and DEQUEUE have O(log n)
running time. HEAPIFY will only sift a small subset of

8

parent vertices in the heap depending on the movement
of the viewpoint, utilizing the distance deferral table.

Finally we note that a hierarchical traverse similar to
the one presented in Section V-D can be used to support
view-frustum culling and occlusion culling.

VII. R ESULTS AND DISCUSSIONS

Tests of our prototype implementation were done on a
Pentium M 1.8GHz Dell D600 laptop with 1GB of RAM
and ATI Radeon Mobility 9000 graphics card with 32M
of VRAM installed on a AGP 4× port. For all results,
a 2049×2049 16bit height field of the Grand Canyon
was used. The flight course has a length of 4000 frames
and contains sharp turnings and speed changes. We use
a 800x600 viewpoint with 16bit color-depth and 24bit
z-depth. The screen error threshold is set to 1 pixels.
A 2048×2048 color map, chopped into textures of size
256×256, is applied along with a tiled high-frequency
“detail texture”, using simple multitexturing.

Our current implementation performs vertex-morphing
on the CPU side using SSE instruction set, which means
that the entire geometry has to be streamed into the
graphics memory for each frame. The benefit is that we
can better support earlier generation graphics hardware,
since enabling vertex morphing can often allow us to
tune up the screen error threshold to 4 pixels with no
noticeable loss of visual quality. This in turn reduces the
output size from over 150,000 triangles down to 60,000
triangles. On the other hand, our implementation is capa-
ble of rendering an output mesh containing over 230,000
triangles at over 80Hz on our testing platform, which
corresponds to a throughput of 20 million triangles per
second. In comparison, the 3DMark 2001 SE benchmark
software by Futuremark Co. [25] reports a 16 million
triangles per second throughput on the same hardware,
so we don’t yet find the dynamic streaming process to
be a performance bottle-neck. However, for current and
next generation graphics hardware, performing morphing
using a vertex shader or not performing morphing at all
is the preferred way to go. Our implementation also uses
one step of “subdivision” for LOD handling, i.e., each
triangle in the binary triangle tree corresponds to four
sub-triangles in the output mesh.

Next we evaluate the efficiency of our scheme by
plotting the frame time, the culling time, and the updat-
ing time for each frame, with and without the distance
deferral table (DDT) optimization, as shown in Fig. 3.
The updating time includes performing LOD refinement
and simplification, but does not include vertex morph-
ing since morphing is intermingled with rendering. For
reference, the size of the output mesh is also plotted.

tim
e

(m
s)

of

 tr
i.

(t
ho

us
an

d)

frame number

Running Time Distribution and Output Size

frame time w/o DDT
frame time w/ DDT

culling time
updating time w/o DDT
updating time w/ DDT

output size

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000
 0

 100

 200

 300

 400

 500

Fig. 3. Plots of frame time, culling time, updating time, andoutput
mesh size, with and without the distance deferral optimization. The
updating time includes LOD refinement and simplification, but does
not include view-frustum culling and vertex morphing.

fr
am

e
ra

te
 (

hz
)

of

 tr
i.

(m
ill

io
n)

frame number

FPS and Tri. Throughput

tri. throughput w/ DDT
tri. throughput w/o DDT

frame rate w/ DDT
frame rate w/o DDT

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500 4000
 0

 5

 10

 15

 20

 25

Fig. 4. Plots of frame rates and triangle thorough-put, withand
without the distance deferral table optimization.

From the graph we can observe that in typical frames,
the updating time using DDT optimization is usually
around 3% of the updating time without the optimization.
Also, the updating time using DDT optimization remains
at a constant low level while, without the optimization,
the updating time varies more or less linearly with
the size of the output. The actual saving in over-all
frame time is not as dramatic, at around 25% to 50%,
largely because CPU processing and graphics hardware
processing can happen in parallel. However, typical
virtual reality applications will not want to use all CPU
processing time for LOD control and can benefit from
the extra three hundred or so milliseconds of CPU time
saved for each second.

To demonstrate the actual rendering performance,
we have also plotted the frame rates and the triangle

9

thorough-puts, with and without the DDT optimization
in Fig. 4. The triangle thorough-put is simply calculated
as frame-rate times the output size. Here we can notice
that the through-put reaches relatively low levels when
the output size is small and the frame rate is high.
This is understandable since in such cases, the main
limiting factor is the fill-rate of graphics hardware. When
the frame rate is below 100Hz, the implementation can
achieve a thorough-put of over 18 million triangles
per second constantly. Compared with the unoptimized
version, the distance deferral table achieves 30% to 70%
increase in triangle thorough-put.

Finally we note that, in the case of constrained op-
timization, a similar boost in performance is observed
when the distance deferral table optimization is applied.
CPU side updating time typically decreases by 80% to
90%.

VIII. C ONCLUSION AND FUTURE WORK

We have presented our algorithms for performing
view-dependent level-of-detail rendering of terrain with
sub-linear CPU processing. Our algorithms work on
the directed acyclic graph based abstraction of a mul-
tiresolution representation and can potentially be ex-
tended to other multiresolution representations. Our key
observation is that the commonly used perspective-
division based error function satisfies that the variation
of its reciprocal is bounded by the distance between the
viewpoints times a constant. In particular, our distance
deferral table based thresholding algorithm exploits this
property and is both robust and simple to implement. In
practice, our algorithms significantly reduce the number
of vertices that need to be processed for each frame
while maintaining mesh optimality. Future works will
include adapting the same schemes to the more irregular
refinement hierarchy of progressive meshes and possibly
supporting a wider variety of error functions.

ACKNOWLEDGEMENTS

This work is the more developed form of a project
initially performed as an entry to the Intel International
Science and Engineering Fair 2001. This manuscript was
submitted for peer-review in 2005. I am grateful to my
anonymous reviewers for their insightful comments and
suggestions. However, during the long lapse between
when I worked on the project and when I sought publica-
tion, another paper [26] that builds on some similar idea
had been published. Also, as pointed out by one of the
reviewers, with the improvement of graphics hardware,
the problem addressed in the paper no longer represents
a bottleneck in visualization. Hence I decide to make
this manuscript public as is.

REFERENCES

[1] P. Lindstrom and V. Pascucci, “Visualization of larget terrain
made easy,” inIEEE Visualization 2001, Oct. 2001, pp. 363–
370.

[2] J. Levenberg, “Fast view-dependent level-of-detail rendering
using cached geometry,” inIEEE Visualization 2002, Oct. 2002.

[3] P. Cignoni, F. Ganovelli, E. G. F. Marton, F. Ponchio, and
R. Scopigno, “BDAM: Batched dynamic adaptive meshes for
high performance terrain visualization,” inProc. EG2003, Sept.
2003, pp. 505–514.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
and R. Scopigno, “Adaptive TetraPuzzles – efficient out-of-core
construction and visualization of gigantic polygonal models,”
ACM Transactions on Graphics, vol. 23, no. 3, August 2004.

[5] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller,
C. Aldrich, and M. B. Mineev-Weinstein, “ROAMing terrain:
Real-time optimally adapting meshes,” inIEEE Visualization
’97, Nov. 1997, pp. 81–88.

[6] “Roam algorithm version 2.0—work in progress.” [Online].
Available: http://www.cognigraph.com/ROAMhomepage/
ROAM2/

[7] M. de Berg and K. T. G. Dobrindt, “On levels of detail in
terrains,” inProceedings of ACM Symposium on Computational
Geometry, June 1995, pp. C26–C27.

[8] P. J. Brown, “Selective mesh refinement for interactive terrain
rendering,” Cambridge University, Techinical Report, Computer
Laboratory 417, Feb. 1997.

[9] D. Schmalstieg, “Smooth levels of detail,” inProceedings of
1997 Virtual Reality Annual International Symposium, Mar.
1997, pp. 12–19.

[10] A. A. Pomeranz, “ROAM using surface triangle clusters (RUS-
TiC),” Master’s thesis, Center for Image Processing and Inte-
grated Computing, University of California, Davis, 2000.

[11] W. S. Evans, D. G. Kirkpatrick, and G. Townsend, “Right-
triangulated irregular networks,”Algorithmica, vol. 30, no. 2,
pp. 264–286, 2001.

[12] H. Hoppe, “Progressive meshes,” inProceedings of SIGGRAPH
96, ser. Computer Graphics Proceedings, Annual Conference
Series, Aug. 1996, pp. 99–108.

[13] J. El-Sana and A. Varshney, “Generalized view-dependent sim-
plification,” Computer Graphics Forum, vol. 18, no. 3, pp. 83–
94, Sept. 1999.

[14] J. Kim and S. Lee, “Transitive mesh space of a progres-
sive mesh,”IEEE Transactions on Visualization and Computer
Graphics, vol. 9, no. 4, pp. 463–480, Oct.–Dec. 2003.

[15] H. Hoppe, “View-dependent refinement of progressive meshes,”
in Proceedings of SIGGRAPH 97, ser. Computer Graphics
Proceedings, Annual Conference Series, Aug. 1997, pp. 189–
198.

[16] ——, “Smooth view-dependent level-of-detail control and its
application to terrain rendering,” inIEEE Visualization ’98, Oct.
1998, pp. 35–42.

[17] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha, “Quick-
vdr: Interactive view-dependent rendering of massive models,”
in IEEE Vis 2004. IEEE Computer Society, 2004, pp. 131–138.

[18] C. Erikson, D. Manocha, and W. V. B. III, “HLODs for faster
display of large static and dynamic environments,” in2001 ACM
Symposium on Interactive 3D Graphics, Mar. 2001, pp. 111–
120.

[19] Y. Zhu, “Uniform remeshing with an adaptive domain: A
new scheme for view-dependent level-of-detail rendering of
meshes,”IEEE Transactions on Visualization and Computer
Graphics, vol. 11, no. 3, pp. 301–316, Mar.–June 2005.

10

[20] S. Röttger, W. Heidrich, P. Slusallek, and H.-P. Seidel, “Real-
time generation of continuous levels of detail for height fields,”
in Proceedings of the 6th International Conference in Central
Europe on Computer Graphics and Visualization, Feb. 1998,
pp. 315–322.

[21] R. Pajarola, “Large scale terrain visualization usingthe re-
stricted quadtree triangulation,” inVIS ’98: Proceedings of the
conference on Visualization ’98. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1998, pp. 19–26.

[22] J. El-Sana and E. Bachmat, “Optimized view-dependent render-
ing for large polygonal datasets,” inIEEE Visualization 2002,
Oct.–Nov. 2002.

[23] Y. Zhu, “Real-time continuous level-of-detail terrain render-
ing with nested splitting space (Intel ISEF 2001 project,
ID: CS012),” 2001. [Online]. Available: http://www.people.fas.
harvard.edu/∼yzhu/isef2k1-paper.pdf

[24] A. J. Stewart, “Hierarchical visibility in terrains,”in Eurograph-
ics Rendering Workshop 1997, J. Dorsey and P. Slusallek, Eds.
New York City, NY: Springer Wien, 1997, pp. 217–228.

[25] F. Corporation, “3dmark2001 second edition.” [Online]. Avail-
able: http://www.futuremark.com/products/

[26] X. Bao, R. Pajarola, and M. Shafae, “SMART: An efficient
technique for massive terrain visualization from out-of-core,” in
Proceedings Vision, Modeling and Visualization (VMV), 2004,
pp. 413–420.

[27] OpenGL Architecture Review Board,OpenGL Reference Man-
ual, 2nd ed. Addison-Wesley, 1996.

