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Abstract

Kullback-Leibler divergence is a natural distance measure between two
probabilistic finite-state automata. Computing this distance is difficult, since
it requires a summation over a countably infinite number of strings. Neder-
hof and Satta (2004) recently provided a solution in the course of solving
the more general problem of finding the cross-entropy between a probabilis-
tic context-free grammar and an unambiguous probabilistic automaton. We
propose a novel solution for two unambiguous probabilistic automata, by
showing that Kullback-Leibler divergence can be defined as a rational ker-
nel (Cortes et al., 2004) over the expectation semiring (Eisner, 2002). Using
this definition, the computation is performed using the general algorithm for
rational kernels, yielding an elegant and efficient solution.

1 Introduction

Kullback-Leibler (KL) divergence(or relative-entropy) is an asymmetric dissimi-
larity measure between two probability distributions,p andq. Intuitively speaking,
it measures the added number of bits required for encoding events sampled from
p using a code based onq. The need for such a measure arises quite naturally for
probability distributions associated with language models in both theoretical and
practical contexts. For instance, (Nederhof, 2005) is concerned with training one
language model, such as a probabilistic finite state automaton (PFA) on the basis of
another, such as a Probabilistic Context-Free Grammar (PCFG), while minimizing
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the KL-divergence between them. Quint (2004) describes an algorithm for check-
ing the equivalence of two weighted automata, a property that could be verified
by checking for a KL-divergence of 0. In the language modeling approach to In-
formation Retrieval (IR) (Ponte and Croft, 1998), there has been growing interest
in using KL-divergence to measure the distance between (the language model as-
sociated with) a query and members of a document collection (Lafferty and Zhai,
2001). In the IR literature, this distance is usually computed by restricting the
computation to unigrams or other fixed-ordern-grams, enabling a straightforward
finite enumeration of all then-grams. The more general case, however, requires
a computation over an infinite set of strings that are assigned a probability by the
language models.

Several authors have suggested that computing the KL-divergence between
finite-state models cannot be solved analytically, and is difficult to compute nu-
merically, leading them to suggest numerical approximations using Monte-Carlo
simulations (Juang and Rabiner, 1985; Falkhausen et al., 1995). Recently, Neder-
hof and Satta (2004) solved the more general problem of computing the related
measure ofcross-entropybetween a PCFG and a deterministic PFA. Since a PFA
can be seen as a right linear PCFG, their solution can also be applied to a pair
of PFAs, and can even be simplified. The difference between cross-entropy and
KL-divergence is the entropy of the first argument. Nederhof and Satta show that
this entropy cannot be effectively computed for a PCFG, but poses no problem
for a PFA. Hence their algorithm yields a complete solution for finding the KL-
divergence between two PFAs.

In this paper we propose an alternative elegant method of computing the KL-
divergence between two unambiguous PFAs. Our main observation is that KL-
divergence can be recast as an instance of arational kernel(Cortes et al., 2004).
Rational kernels provide a general way of specifying and efficiently computing
diverse real-valued metrics over variable-length sequences and more generally,
over weighted automata. They can be combined with Support Vector Machines
(SVMs) (Vapnik, 1998) to efficiently classify weighted automata. Rational kernels
are parameterized by several parameters, including a semiring, a transducer, and
a function from the semiring to the real numbers. Crucially, we choose to use the
expectation semiring(Eisner, 2002) as the semiring underlying the rational kernel.
By virtue of this choice, the entire computation proceeds directly from (a slight
generalization of) the general rational kernel algorithm, yielding a simple and effi-
cient elegant solution.

This paper is structured as follows. We first provide the necessary definitions in
Section 2, including semirings, automata (Kuich and Salomaa, 1986), and basic no-
tions from information theory as applied to automata. Section 3 gives an overview
of Nederhof and Satta’s (2004) solution. Section 4 presents rational kernels (Cortes
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et al., 2004) and describes the construction of a rational kernel computing the KL-
divergence for PFAs. Finally, we describe an implementation of the algorithm in
Section 5.

2 Preliminaries

2.1 Semirings and automata

A system(K,�,e) is a monoid if K is closed under the binary relation�, � is
associative ande is an identity for�.

A monoid morphismis a functionϕ from one monoid,(K1,�1,e1), to another,
(K2,�2,e2) respecting the monoid’s operation, i.e.ϕ(a�1 b) = ϕ(a)�2 ϕ(b), and
its identity element, i.e.ϕ(e1) = e2.

A semiring is a system(K,⊕,⊗, 0̄, 1̄) such that:(K,⊕, 0̄) is a commutative
monoid wherē0 is the identity element of⊕, (K,⊗, 1̄) is a monoid wherē1 is the
identity element of⊗,⊗ distributes over⊕, and0̄ is an annihilator for⊗. A semir-
ing is closedif for all a∈ K, the infinite sum⊕∞

n=0an, written a∗, is well defined
and inK, and associativity, commutativity, and distributivity apply to countable
sums. A semiring isk-closed if for alla∈K,

⊕k+1
n=0an =

⊕k
n=0an.

A weighted transducer, T, over the semiringK is a tuple(Σ,∆,Q, I ,F,E)
where1 Σ is the finite input alphabet,∆ is the finite output alphabet,Q is a finite
set of states,I ⊆ Q is the set of initial states,F ⊆ Q is the set of final states, and
E ⊆ Q× (Σ∪{ε})× (∆∪{ε})×K×Q is a finite set of transitions. Aweighted
automatonis a weighted transducer in which the input and output labels on each
transition are identical.

For a transitione∈ E, let w[e] ∈ K be its weight. A path is an element of
E∗ with consecutive transitions.PathsA is the set of all paths inA from I to F .
The weight of a pathπ = e1, . . .ek is w[π] = w[e1]⊗ . . .⊗w[ek]. For a stringx ∈
Σ∗, PathsA(x) is the subset ofPathsA labeled byx. The language accepted byA
is L(A) = {x ∈ Σ∗ | PathsA(x) 6= /0}. The weight assigned byA to x is A(x) =⊕

π∈PathsA(x) w[π]. We defineA(x) = 0̄ for x 6∈ L(A).
A weighted automaton isunambiguousif for eachx∈ Σ∗, | PathsA(x) |≤ 1. It

is deterministicif it has a unique initial state and if two transitions leaving any state
share the same label.

A probabilistic finite automaton (PFA) A is a weighted automaton over thereal
semiring(sometimes called theprobability semiring), (R≥0,+, ·,0,1), that assigns

1Weighted transducers are usually presented with additional start and end weights, which without
loss of generality we ignore here.
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each stringx∈ Σ∗ a probability,pA(x) ∈ [0,1]. It is consistentif ∑x∈Σ∗ pA(x) = 1,
inducing a probability distribution overΣ∗.

2.2 Entropy, relative-entropy, and cross-entropy

Soule (1974) applies the notion of entropy to PCFGs, and the same definitions
apply to PFAs. Theentropyof pA is:

H(pA) def= − ∑
x∈Σ∗

pA(x) logpA(x) =− ∑
x∈L(A)

pA(x) logpA(x) .

The KL-divergence (relative-entropy) fromA to B is defined by:

D(A || B) def= EpA

(
log

pA(x)
pB(x)

)
= ∑

x∈Σ∗
pA(x) · log

(
pA(x)
pB(x)

)
where by convention ifpA(x) = 0, then pA(x) · log

(
pA(x)
pB(x)

)
= 0. Otherwise, if

pB(x) = 0, then it is∞.
If there is a wordw∈ L(A)\L(B), thenD(A ||B) = ∞, a situation we can easily

check for by checking whetherL(A)∩L(B) = /0. Thus, we assume without loss of
generality thatL(A)⊆ L(B).

The cross-entropy fromA to B is

H(A || B) def= ∑
x∈Σ∗

pA(x)
1

logpB(x)
.

Nederhof and Satta (2004) make use of the fact that relative entropy can be
expressed as a sum of the cross-entropy and the entropy of the first argument:
D(A || B) = H(A || B)−H(A) =

∑
x∈L(A)

pA(x)
1

logpB(x)
+ ∑

x∈L(A)
pA(x) logpA(x) (1)

2.3 The expectation semiring

Eisner (2002) introduced the expectation semiring as a way to compute theE-step
of the Expectation Maximization algorithm for training probabilistic transducers.
Given a PFAA, each transitione, and by extension each path,π, is assigned not
only a probability,pA(π), but also a value,vA(π), an element of some vector space,
which we set here to beR≥0. The expectation ofvA, EpA(vA), can be computed
using the expectation semiring:(R≥0×R≥0,⊕,⊗, 0̄, 1̄), where the semiring oper-
ations are:
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• 〈p1,v1〉⊗〈p2,v2〉
def= 〈p1p2, p1v2 + p2v1〉,

• 〈p1,v1〉⊕〈p2,v2〉
def= 〈p1 + p2,v1 +v2〉,

• 〈p,v〉∗ def= 〈p∗, p∗ · p∗v〉 if p∗ is defined,

and the additive and multiplicative identities are:0̄
def= 〈0,0〉 and1̄

def= 〈1,0〉.
If the transition weights ofA are set to be elements of this semiring of the form

w[e] = 〈pA(e), pA(e)vA(e)〉, then the weight of a set of paths,Π, is〈
∑

π∈Π
pA(π) , ∑

π∈Π
pA(π)vA(π)

〉
(2)

Thus, accumulated overPathsA, the second coordinate of the weight isEpA(vA).

3 Nederhof and Satta’s solution

Nederhof and Satta (2004) present an algorithm for computing the cross-entropy
between a PCFG,Gp, and a deterministic PFA,Mp, defined by

H(Gp || Mp) = ∑
x

pG(x)
1

logpM(x)
, (3)

which combines the probabilities of each string being accepted byGp and byMp.
Nederhof and Satta manage to reduce this to an expression involving the individual
transitions of the PFA, of the forms

a7→ t. Obviously, the PFA’s log probabilities for
such transitions are known, but finding the expectation of these probabilities over
the derivations ofGp is more challenging. To do so, they construct a PCFG,G∩,p,
representing the weighted intersection (Nederhof and Satta, 2003)—a weighted ex-
tension of the classical unweighted construction (Bar-Hillel et al., 1961)—ofGp

and the non-probabilistic automatonM underlyingMp. In particular, for each tran-
sition ofM, G∩,p includes a non-terminal〈s,a, t〉 together with the rule,〈s,a, t〉→ a
with probability 1. A derivation ofG∩,p simulates a derivation of the original
PCFG as well as a path through the automaton, assigning it the same probability
asGp would. What we would like to know is the expected frequency of using the
〈s,a, t〉 → a rule over allG∩,p derivations. This is done by recursively definingin
andout probabilities for each non-terminal ofG∩,p, similarly to the decomposi-
tion used by the inside-outside algorithm (Lari and Young, 1990; Lari and Young,
1991). The required expected frequency is shown to be exactlyoutG∩,p(〈s,a, t〉).
They show that the cross-entropy can be given by
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H(Gp || Mp) = ∑
s

a7→t

outG∩,p(〈s,a, t〉) · log
1

pM(s a7→ t)
(4)

Using Equation 1, the KL-divergence betweenGp andMp can be expressed
as the difference between the cross-entropy of the PCFG and the PFA, and the
entropy of the PCFG. Unfortunately, Nederhof and Satta show that this entropy
term cannot be effectively computed for a PCFG. What can be computed is the
derivational entropy, Hd(Gp), which is the expectation of the information over all
complete derivations ofGp. In general,H(Gp)≤Hd(Gp) with equality if and only
if G is unambiguous (Soule, 1974). Since ambiguity of CFGs is undecidable, we
cannot hope to be able to computeH(GP).

Since a PFA can be viewed as a right linear PCFG, the algorithm above can also
compute the cross-entropy for a pair of deterministic PFAs. Given that the entropy
of a PFA can be computed, this approach therefore yields a complete solution
for computing the KL-divergence between a pair of PFAs. This is summarized
in Figure 1. Moreover, the algorithm can be simplified for this case (Nederhof,
2005) to use the weighted intersection of two PFAs (Pereira and Riley, 1997). The
computation in Equation 3 can be decomposed more efficiently in this case to states
rather than transitions, using theforward andbackwardprobabilities. These can
be computed exactly by solving a system of linear equations.

PCFG & PFA cross-entropy

PFA & PFA KL-divergence

Figure 1: Relations computed by Nederhof and Satta’s algorithm

What is the run-time complexity of this algorithm? The dominant factor is
the solution of the system of linear equations. There are a pair offorward and
backwardequations for each state, for a total ofO(| QA | · | QB |) linear equations.
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Gaussian elimination takes cubic time, but faster matrix inversion algorithms based
on sub-cubic matrix multiplication (Strassen, 1969) are known. These algorithms
have complexityO(nα) for matrices of sizen andα < 3, making the overall com-
plexity of Nederhof and Satta’s algorithmO((| QA | · | QB |)α). The best known
exponent to date isα = 2.376 (Coppersmith and Winograd, 1990).

We now turn to present rational kernels and our algorithm.

4 Rational kernels

Rational kernels (Cortes et al., 2004) generalize many distance measures over
weighted automata. LetA and B be two weighted automata over the alphabets
Σ and∆, respectively, and the same semiringK. A rational kernelis a function pa-
rameterized by a weighted transducerT = (Σ,∆,Q, I ,F,E) overK, and a function
ψ : K→ R as follows:

K(A,B) = ψ(
⊕
x∈Σ∗
y∈∆∗

A(x)⊗T(x,y)⊗B(y)) (5)

We would like to generalize the definition by allowing the semiring of the au-
tomata to differ from the kernel’s semiring. In particular, we will use weighted
automata over the real semiring, but perform the kernel’s computation using the
expectation semiring. Generally, ifA andB are both defined over the semiringK′

we extend the definition by adding a pair of⊗-monoid morphismsϕA,ϕB : K′→K:

K(A,B) = ψ(
⊕
x∈Σ∗
y∈∆∗

ϕA(A(x))⊗T(x,y)⊗ϕB(B(y))) (6)

Cortes et al. give a general algorithm for computing rational kernels over weighted
automata. The⊗ operation in Equation 5 can be computed using the weighted
composition (Pereira and Riley, 1997), ofA◦T ◦B in time

O((| QA |+ | EA |)(| QB |+ | EB |))

(takingT to be of constant size). The⊕ operation accumulates all the weights over
all paths of the composition, and can be performed using the Floyd-Warshall algo-
rithm for all-pairs-shortest-paths (Cormen et al., 1989) in timeO(| Q |3) assuming
constant time for computing the semiring’s operations. Thus on the composition it
runs in timeO((| QA | · | QB |)3). Clearly, this is the dominant factor in the time
complexity.

Mohri (2002) presents a more efficient single-source shortest paths algorithm.
Its exact complexity depends on several factors including the semiring and the
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queuing discipline. WhenA andB are guaranteed to be acyclic, the algorithm is
linear in the size (| Q |+ | E |) of the composed automaton.

Unfortunately, the algorithm can only be applied exactly to closed ork-closed
semirings, which the expectation semiring is not. Mohri introduces a simple mod-
ification to the algorithm, which provides an approximate solution for general
semirings, which is in practice orders of magnitude faster than the all-pairs-shortest-
paths algorithm (Mohri, 2002).

4.1 The KL rational kernel

Let A andB be unambiguous PFAs (see Section 4.2) over the same alphabetΣ. We
define the KL rational kernel to be:

K(A,B) = ψ(
⊕

x,y∈Σ∗
ϕA(A(x))⊗ I(x,y)⊗ϕB(B(y))) (7)

whereI is the identity transducer overΣ∗, ψ(〈p,v〉) = v, and the multiplicative
monoid morphisms are defined by:

• ϕA(pA) = 〈pA, pA logpA〉,

• ϕB(pB) =
{

〈0,0〉 if p = 0
〈1,− logpB〉 otherwise.

It is easy to verify that these morphisms do indeed respect the multiplicative oper-
ations and the identity element.

With these morphisms, for each transitioneA in A andeB in B labeled by the
same symbol,x∈ Σ, the weights on the compositionA◦ I ◦B are set to:

ϕA(pA(eA))⊗ϕB(pB(eB)) = 〈pA(eA), pA(eA) log(
pA(eA)
pB(eB)

)〉 (8)

By Equation 2, the accumulation of all these weights over all possible paths
yields

〈∑
π∈Π

pA(π), ∑
π∈Π

pA(π) log(
pA(π)
pB(π)

)〉 .

Thus we get the total probability mass ofpA in the first coordinate and the KL-
divergence in the second coordinate, whichψ proceeds to extract as the final result.
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4.2 Ambiguity

We have restricted the algorithm to input PFAs that are both unambiguous. The
correctness of the expectation computation is dependent on having only one path
for each accepted string. A simple counter-example where one of the PFAs is
ambiguous is shown in Figure 4.2. The compositionA◦B would have two paths
labeled witha, each with weight〈0.5,0.5log0.5

1 〉, the⊕-sum of which is〈1,−1〉
instead of the expected〈1,0〉.

a/0.5

a/0.5

(a)A

a/1

(b) B

Figure 2: Two automata accepting the same language with the same probability
distribution.

Strictly speaking, this is a more stringent requirement than the one imposed by
Nederhof and Satta’s algorithm, which allows the first argument (PCFG or PFA)
to be ambiguous, but requires the second argument PFA to be unambiguous as
summarized in Table 1. This difference stems from the way the probabilities and
their logarithms are combined. Whereas in our approach they are intertwined,
Equation 4 separates the logarithms from theout probabilities. Arguably, the extra
unambiguity requirement imposed by our algorithm is not a major one, since both
PFAs are likely to represent related languages; if one PFA can be guaranteed to be
unambiguous, presumably so can the other.

PPPPPPPPPPFA1

PFA2 Ambiguous Unambiguous

Ambiguous - Nederhof & Satta
Unambiguous - Nederhof & Satta

and this paper

Table 1: Sensitivity of the algorithms to ambiguity of the inputs

In principle, given an ambiguous PFA, we can attempt to apply determiniza-
tion, bearing in mind that (in contrast to the unweighted case) not every PFA is
determinizable. Fortunately, determinizability can be determined efficiently (Al-
lauzen and Mohri, 2003). The explosion in the number of states, however, makes
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determinization practical only for relatively small PFAs. Thus, the unambiguity
requirement is essential.

4.3 ε-transitions

In the presence ofε-transitions, determinism does not imply unambiguity. For
unambiguous automata withε-transitions,ε-removal is not required, and the al-
gorithm can be applied directly. This is a non-trivial property of the algorithm.
We have to maintain the invariant that the computed weights of theε-transition
are of the form in Equation 8. Recall thatε-transitions can arise in the composi-
tion automaton in two ways (Pereira and Riley, 1997). They can be the result of
composing anε-transition,eA, from A, with anε-transition,eB, from B, in which
case the computation proceeds exactly as if it was a non-ε transition. They may
also arise, however, from following anε-transition in one of the PFAs, while re-
maining in the same state in the other. In this case, Pereira and Riley add a silent
(τ) self-transition with weight 1. We have to verify that bothϕA(1)⊗ϕB(pB(eB))
andϕA(pA(eA))⊗ϕB(1) are of the correct form. We take advantage of the fact
that ϕA andϕB were both defined as multiplicative monoid morphisms. Hence,
ϕA(1)⊗ϕB(pB(eB)) = 1̄⊗ϕB(pB(eB)) = 〈1,1· log 1

pB(eB)〉 which is of the required
form. Similarly for the symmetric case.

5 Implementation

The simplicity of our algorithm leads to a straightforward implementation, which
we have proceeded to carry out. We used the Aachen open-source FSA toolkit (Kan-
thak and Ney, 2004), implemented in C++. The toolkit conveniently parameter-
izes the standard weighted automata operations such as composition by a semiring
class. Thus, by introducing a class implementing the expectation semiring’s op-
erations, we automatically extend the automata operations to also work over this
semiring.

To compute shortest paths, we can run the single-source-shortest-path algo-
rithm of Mohri (2002) discussed in Section 4. Fortunately, this algorithm is already
implemented as part of the toolkit’sε-removal algorithm (Mohri, 2000). Recall
that the algorithm works only for closed ork-closed semirings, but that a small
modification—which we made—yields an approximate solution for general semir-
ings. As suggested by Eisner (2002) one can make use of theε-removal operation
directly by changing all the transition labels toε, and applyingε-removal, which
is what we did. (See Eisner (2002) for additional possible optimizations). All that
remains is implementing the morphisms, which we did using some Python code
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and the AT&T FSM library (Mohri et al., 2000).

6 Conclusion

We have presented an elegant approach to computing the KL-divergence between
two PFAs. Like Nederhof and Satta, our algorithm includes the two basic elements
of intersection/composition and the computation of an expectation, but rather than
solving a large system of linear equations, the rational kernels algorithm performs
all the work. The computational complexity of both approaches is comparable.
Nederhof and Satta’s solution is sub-cubic in| QA | · | QB |. An exact solution for
our approach using the Floyd-Warshall algorithm is cubic. A practical approximate
solution can be achieved significantly faster using Mohri’s algorithm.

By defining the computation of the KL-divergence as a rational kernel, we
can directly use it for classifying weighted automata using SVMs. Moreno et al.
(2004) suggests using a kernel based on KL-divergence for classifying image or
speech data, but used Monte Carlo simulation to approximate the divergence.

Finally, viewing KL-divergence as a rational kernel suggests interesting flex-
ible variants. For instance, recall thatA and B have to be defined on the same
alphabet, a situation that is unrealistic if they represent language models trained
on different corpora. We can relax this assumption by replacing the identity trans-
ducer,I , in Equation 7 with a more sophisticated transducer; e.g., one that maps
words fromA’s language to words fromB’s or maps out-of-vocabulary items to a
special symbol, with some appropriate penalty.
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