
Recognition of Users' Activities using Constraint Satisfaction

Swapna Reddy, Ya'akov Gal, Stuart Shieber

TR-05-09

Computer Science Group
Harvard University

Cambridge, Massachusetts

Recognition of Users’ Activities using Constraint
Satisfaction

Swapna Reddy, Ya’akov Gal, and Stuart Shieber

School of Engineering and Applied Sciences
Harvard University

Cambridge MA 02138

Abstract. Ideally designed software allow users to explore and experi-
ment during their interaction, and to pursue multiple, interleaving plans.
This makes it challenging to automatically recognize users’ interactions
with such software. This paper shows that this recognition problem can
be formalized and solved using constraint satisfaction techniques. It con-
structs algorithms that use these techniques to recognize users’ activities
by comparing their interaction histories with a set of ideal solutions.
These plan-recognition algorithms are complete, in the sense that they
are guaranteed to recognize users’ plans if they exist. We evaluate these
algorithms empirically on data obtained from different people solving
mathematical problems using commercially available pedagogical soft-
ware. In all cases, these algorithms were able to identify users’ activities
with the software and distinguish between those actions that played a
salient part in the solution and redundant, exploratory actions.

1 Introduction

Developments in technology and connectivity have increased the prevalence and
reach of computer systems in our daily lives. A prime example of this effect is the
use of computer systems in settings that until recently did not directly involve
computers, like pedagogy, and support systems for the cognitively-impaired [1].
In many of these environments, computer systems serve a role that aids and
complements the work of human professionals and care-givers. Consider for ex-
ample, a system for teaching mathematics to students, which includes teachers,
a computer tutor, and students. Teachers wish to know the individual strengths
and weaknesses of each student and to assess their performance as a group. Thus,
in addition to interacting with the students, the computer tutor needs to assess
and understand their actions.

Therefore, a key requirement for computer systems in these settings is to
recognize the activities of their users. This is important for (1) informing care-
givers about the performance and difficulties encountered by individuals users,
(2) facilitating machine-generated support for the purpose of guiding the user in
its interactions, (3) providing software developers with information relating to
how the software is used and to alert about bugs, system loads, and so forth.

Traditional approaches to plan recognition assume goal-oriented agents whose
actions are consistent with their knowledge base and who form a single encom-
passing plan towards achieving their goal. In contrast, an objective of flexible
software is to allow users to explore and experiment during their interaction pro-
cess. Users may interchangeably pursue multiple, interleaving plans; they may
be confused about which appropriate plan to take, and they may make mistakes.
Clearly, reasoning about every possible way in which a user can interact in this
systems is infeasible.

This paper reports on the development of plan-recognition algorithms for
meeting these challenges. These algorithms work work directly on users’ interac-
tion histories and compare them to ideal solutions designed by domain experts.
They are able to infer users’ plans for solving problems as well as the extent to
which these plans differed from ideal solutions. All of the algorithms make use
of constraint satisfaction techniques to formalize a match between users’ inter-
action histories and potential solutions. Constraint satisfaction problems (CSP)
have been used to express and solve a wide spectrum of problems in computer
science. We show the utility of these approaches towards the construction of plan
recognition algorithms that are complete and correct, in the sense that the plans
they derive necessarily match users’ activities, and that these plans are guaran-
teed to be found. We show empirically that these computational guarantees do
not impede their performance.

We provide an empirical evaluation of our algorithms using a commercially-
available pedagogical software for mathematics education, used in schools world-
wide. This software provides users with a “construction kit” that allows students
to create and analyze a large number of statistical models [2]. We illustrate how
to formalize plan-recognition in this software, and evaluate our algorithms on
interactions obtained from twelve subjects using this software to solve problems.
We show that our methods outperform a recently proposed approach for inferring
users’ activities which was not able to recognize some of the solutions. Lastly, we
discuss the trade-offs between these algorithms in terms of their computational
complexity.

1.1 Prior Work

Past approaches for inferring users’ activities with software have relied on query-
ing the user for clarification about his or her actions in order to reduce the search
space of possible plans [3, 4]. However, interrupting users impedes their satisfac-
tion and performance, and the information they provide to the system cannot
be assumed to be correct or helpful.

Gal et al. [5] proposed a non-intrusive approach for recognizing users’ activi-
ties based on a greedy algorithms that uses various heuristics to match between
users’ interactions and solutions. This algorithm is not guaranteed to recognize a
solution in the interaction history, and in case that the user solved the problem
several times, it will only identify one of those solutions. Other non-intrusive
approaches employed machine learning to predict users’ activities given their
past patterns of behavior [6, 7]. These methods assume that people are likely

to repeat particular behavioral patterns because they usually perform the same
activities (e.g., deleting files, writing reports). These assumptions do not hold
for pedagogical software, where students build on their past interactions with
the software to solve new problems, and their goals may change dynamically
as they interact with the software. In addition, the model parameters must be
trained from data or stipulated by domain experts. Both of these techniques
require considerable effort in pedagogical domains.

Lastly, our work is distinguished from probabilistic approaches that attempt
to predict users’ actions given their past interaction[8, 9]. Our work addresses
a different problem, that of recognizing complete plans given entire interaction
histories. Straightforward adaptation of probabilistic techniques for this purpose
is not possible because the size of probabilistic models is typically exponential in
the length of the history they consider, and users’ complete interaction histories
may span hundreds of actions.

2 The TinkerPlots Domain

Our study involves the use of a commercial system called TinkerPlots, used
world-wide to teach students in grades 4-8 about statistics and mathematics [10].
In TinkerPlots, students actively model stochastic events and construct models
that generate data. TinkerPlots is flexible, allowing for data to be modeled,
generated, and analyzed in many different ways using an open-ended interface.
Our empirical studies focused on two different problems in which students used
TinkerPlots to model and analyze stochastic data.

We will use the following example, called RAIN, drawn from a set of problems
posed to students using TinkerPlots: “The probability it will rain on any given
day is 75%. Use TinkerPlots to compute the probability that it will rain on the
next four consecutive days.” A few approaches towards modeling this problem
using TinkerPlots is shown in Figure 1. The model shown in Figure 1a includes
a sampler containing a “spinner” device, which contains two possible events,
“rain” and “sun”. The distribution mass of “rain” is three times as likely as
“sun” as can be shown by the surface area of this event within the spinner. Each
draw of this sampler will sample the weather for a given day. The number of
draws is set to four, making the sampler a stochastic model of the weather in
four consecutive days. Another possible approach towards solving this problem
is presented in Figure 1b, showing a sampler with four spinner devices. Each of
these devices is drawn once, and is a stochastic model of the weather on a given
day. In both of these approaches, the sampler is effectively a model of the joint
probability distribution over the weather for four consecutive days. There are
other approaches towards modeling this scenario which we do not show here.
Figure 1b shows part of the data generated by the sampler and the end-result
of a process in which this data is projected onto a histogram, for the purpose of
inferring the likelihood of rain.

Students interact with TinkerPlots through a series of rudimentary opera-
tions that create, modify or delete objects such as spinners, devices and plots.

(a) Two Possible Sampler Models

(b) Generating Sampler Data

Fig. 1: Solving the RAIN Problem with TinkerPlots

We will use the term basic actions to refer to these operations, which can of-
ten be carried out by a single menu or mouse operation. TinkerPlots interac-
tions are recorded as a linear sequence of basic actions in order of their oc-
currence. Each basic action uses a unique identification tag and parameters
to refer to objects that are transparent to the user. For example, the action
ADS[s = 11, d = 2, dt = ”spinner”] (Add Device to Sampler) refers to the action
of adding a device of type “spinner” and ID 3 to sampler ID 11. The following
is a partial sequence of the actions used to make up the creation of the spinner
device of Figure 1a. Actions are presented from top to bottom and left to right
in order of occurrence, with the following abbreviated action names: AED (Add
Event to Device), AS (Add Sampler), CPD (Change Probability in Device)

. . . ,ADS[s = 11, d = 2, dt = ”spinner”], AED[s = 11, d = 2, ei = 1, el = ”rain”], AS[s = 9],

AED[s = 11, d = 2, ei = 2, el = ”sun”], CPD[s = 11, d = 2, ss = 1 : 3],

ADS[s = 11, d = 3, dt = ”spinner”], . . . ,

Fig. 2: Partial Action Sequence of an Interaction.

3 Actions, Recipes and Restrictions

In this section we make a distinction between basic TinkerPlots actions and more
abstract activities that characterize a user’s interaction with software. We call
these activities complex actions. Examples of such actions in the TinkerPlots
domain include creating four spinners, solving the RAIN problem, or fitting
sampler data to a plot. Complex actions can be decomposed into sub-actions [11].
A sub-action is a basic TinkerPlots action or it can be a complex action itself.
A recipe for a complex action is defined as an ideal sequence of operations for
fulfilling the complex action [12].

Formally, an action is a pair (a, Pa) where a is an identifier and Pa is a set of
parameters. (we also refer to an action simply by its identifier). A recipe for an
action a includes (1) a set of sub-actions s1, . . . sn and (2) a set of restrictions
Ra that are Boolean functions over the sub-actions. There are two types of re-
strictions. An ordering restriction defines a precedence relation between actions.
A parametric restriction returns value true if the value of an expression is sat-
isfied. For example, the parameters of two separate actions could be required to
agree (or disagree) on the value of a constant.

Figure 3 shows a possible recipe for completing the complex action CCD
(Create Correct Device) that includes the basic actions ADS (Add Device to
Sampler), CPD (Change Probabilities in Device) and the complex action AED
(Add Event to Device). When denoting constraints for a recipe, we specify the
actions and parameters that involve each restriction in the recipe above, using a
wild-card symbol “*” to express “don’t-care” values for the parameters that are
not mentioned explicitly. The first restriction in the recipe of Figure 3 specifies

CCD[s, d, i1, i2] −→ ADS[s, d, dt], AEDs, d, i1, e1] , AEDs, d, i2, e2] , CPD[s, d, ss]

with constraints

ADS[∗] ≺ AED[∗] ≺ CPD[∗]
CCD[s, d, ∗] = ADS[s, d, ∗] = AEDs, d, ∗]

CCD[i1, ∗] = AEDi1, ∗]
CPD[ss, ∗] = (3 : 1)

Fig. 3: A Recipe for Creating a Device for the RAIN problem

that the addition of a device must precede the addition of events in the device
as well as setting the likelihood of each event. The second and third restriction
specify that actions in the recipe agree on the parameter identification tags that
are bound to the TinkerPlots objects they use. The last restriction specifies that
one of the events in the device should be weighted three times more likely than
the other event.

We are now ready to begin to describe the processes that form the building
blocks of algorithms for recognizing users’ activities in TinkerPlots. An expansion
of a complex action a is the set of all actions and restrictions such that performing
those actions under the restrictions constitute completing the action. We state
this formally below.

Definition 1. Let a be a complex action with restrictions R. An expansion is
a set of actions s1, . . . , sn and restrictions R∗ that meet the following criteria:

1. The actions s1, . . . , sn are the constituent actions of a recipe for a.
2. Any restriction in Ra also exists in R∗.
3. For any restriction r ∈ R involving a, and for each action si, there exists

a restriction in R∗ in which action a is substituted by si. (The substitution
operation is formally defined as r{a/si} in the normal term writing sense).

For example, consider the complex action CCD and the restriction AS[∗] ≺ CCD[∗] ,
implying that the process by which a device is created can only occur after a
sampler was added using the AS action. An expansion of the CCD action with
the recipe of Figure 3 will yield the constituent actions and restrictions of the
recipe, as well as the following restrictions (we use set notation for imposing an
ordering between AS and each action in the set).

AS[∗] ≺ {ADS[∗], AED[∗] ,CPD[∗]}

We now define a structured tree representation that contains all possible
recipes for completing an action a. A recipe tree has two types of nodes: “AND”
nodes, whose children represent actions that must be carried out in order to
complete a recipe; and “OR” nodes, whose children represent a choice of action
for completing recipe.

Definition 2. A recipe tree for action a given a (possibly empty) set of restric-
tions R is a tree whose root is action a and labeled as an “OR” node. For each
recipe of a, with sub-actions s1, . . . sn and restrictions Ra, there is an “AND”
child node labeled with s1, . . . sn. The children of this “AND” node are the recipe
trees of each sub-action sj given restrictions Ra.

A partial recipe tree for the the CCD (Create Correct Device) action is pre-
sented below. We only expand the descendants associated with the recipes that
appear in the first and second child nodes of the CCD action (from left to right).
Figures 1a and 1b show the end-result of choosing these recipes to complete the
CCD action in TinkerPlots.

An exhaustive expansion for a given a set of restrictions R is the result of
iteratively expanding a to get a set of basic level actions and restrictions on these
actions. These represent the set of necessary actions in TinkerPlots towards
completing a task. Figure 5 shows the actions and restrictions comprising a
possible expansion for completing the action CCD

Fig. 4: A Partial Recipe Tree for the Create Correct Device (CCD) Action

{ADS[s, d, dt], AED[s, d, ei, el], AED[s, d, ei, el], CPD[s, d, ss]}

ADS[∗] ≺ CPD[∗]
ADS[dt, ∗] = ”spinner”

ADS[s, d, ∗] = AED[s, d, ∗]

Fig. 5: An Exhaustive Expansion of the CCD Action

We say a match exists between a user interaction and an exhaustive expansion
if each action in the expansion can be mapped to a distinct user action such that
the user actions together satisfy all restrictions. This mapping should allow for
a users’ interaction to contain redundant actions representing users’ exploration
and mistakes.

Definition 3. A match between an expansion (S,R) with actions S and restric-
tions R and a user interaction X is an injective mapping, φ:A→ X, such that the
following holds: for all r ∈ R and for any subset S′ = (s1, . . . , sm) of S, if r in-
volves S′ then the restriction r{S′/φ(s1), . . . , φ(sm))} will satisfy r. The notation
r{S′/φ(s1), . . . , φ(sm))} refers to the substitution of S′ with φ(s1), . . . , φ(sm) in
restriction r.

For example, the following actions in the interaction history of Figure 2 match
their respective action in the exhaustive expansion of Figure 5.

ADS[s = 11, d = 2, dt = ”spinner”],AED[s = 11, d = 2, ei = 1, el− ”rain”],
AED[s = 11, d = 2, ei = 2, el = ”sun”],CPD[s = 11, d = 2, ss = 1 : 3]

This match represents a complete account of the salient actions used to complete
the action CCD . The actions NS[s = 9] and ADS[s = 11, d = 3, dt = ”spinner”]
in the interaction history were deemed redundant by the match.

Lastly, planning is the process by which users use recipes to compose basic
and complex actions towards completing tasks in TinkerPlots. A plan for a is
a set of basic and complex actions, such that each complex action is expanded
into sub-actions that fulfill a recipe for the complex action. The basic actions
in a plan are an exhaustive expansion of a. Figure 6 shows a possible plan for
solving the CCD action.

Fig. 6: A Plan for fulfilling the CCD action

4 From Recipes to Constraint Satisfaction Problems

We now show how to combine a recipe tree and a user’s interaction sequence to
create a constraint satisfaction problem. The solution to a CSP provides an ex-
planation of a user’s activities by providing a match (in the sense of Definition 3)
between an exhaustive expansion and an interaction history. A Constraint Sat-
isfaction Problem (CSP) is a triple (X,Dom,C). X = {x1, ..., xn} is a finite set
of variables with respective domains Dom = {d1, ..., dn}, in which each domain
contains the possible values for its corresponding variable, Di = {v1, ..., vk}, and
a set of constraints C = {c1, ..., cm} that limit the values that can be assigned to
any set of variables. Each constraint Ci is a tuple containing a set of variables,
and a set of values taken from the domain of each variable. Essentially, Ci is a
Boolean function over V .

We can combine a given interaction history and an exhaustive expansion to
a CSP as follows: Let S = (s1, . . . , sn) and R be a set of actions and restrictions
in the expansion. Each basic action in the expansion becomes a unique variable
in the CSP. If the same action appears more than once in the expansion, it is
subscripted accordingly. For example, the expansion of Figure 5 includes two
AED actions, which will yield two variables AED1 and AED2 in the CSP. The
domain of each variable is derived from the user’s interaction and is denoted
{(s, i1), . . . , (s, in)}, where s is some action in the expansion S, and i1, . . . , in is

a set of indices, representing the temporal order of the various occurrences of
s in the interaction history. For each occurrence of action s at index i in the
interaction history, there is an element (s, i) in the domain of s in the CSP.

For example, let us take the expansion of Figure 5 for the CCD action. The
domains of the actions in the exhaustive expansion for CCD action are as follows:

Dom(ADS) = {(ADS, 0), (ADS, 5)}
Dom(AED1) = {(AED, 1), (AED, 3)}
Dom(AED2) = {(AED, 1), (AED, 3)}
Dom(NS) = {(NS, 2)}

Dom(CPD) = {(CPD, 4)}

4.1 Adding Constraints

Having defined the variables and their associated domains in the CSP, we now
show how to map restrictions R in the expansion S to constraints in the CSP.
For each restriction r(s1, . . . , sm) in R involving actions (s1. . . . , sm) ∈ S, we
add a constraint over the corresponding variables in the CSP in the form of a
tuple of variables and values. For any subset of actions in an expansion S we
add constraint {(s1, . . . , sm), ((s1, i1), . . . , (sm, im))} when there is a restriction
r(s1, . . . , sm) in R, so that the indices i1, . . . , im are decreasing. For example,
given the constraint ADS ≺ CPD in the exhaustive expansion of Figure 5, we
will add the following constraint to the CSP:

{(ADS,CPD), ((ADS, 5), (CPD, 4))}

Intuitively, this constraint will represent a prohibitive event in which action ADS
precedes CPD, which violates the restriction. Parametric restrictions are added
in the same way. For example, we get that

{(ADS,AED), ((ADS[d = 3], 5), (AED1[d = 2], 1))}

Intuitively, this constraint will not allow a match to occur in which actions
ADS and AED1 disagree on the value of the parameter representing the device
ID. Similar constraints are added for the other parametric restrictions in the
example. Lastly, for variables corresponding to the same action ID, such as
AED1 and AED2, we add a redundancy constraint ensuring that these variables
are assigned distinct values, because they represent separate occurrences of the
same action.

5 Algorithms for Recognizing Interaction Histories

A solution for a CSP provides a match between an exhaustive expansion and
an interaction history. The path traversed on the recipe tree to generate the
exhaustive expansion is effectively the user’s plan towards completing a task

in TinkerPlots. We provide two algorithms that use CSPs that output a plan
for action a in an interaction history H given a data base of recipes RP . Both
algorithms rely on the recipe tree of a to inform their recognition process. The
first algorithm, shown in Figure 7, is a brute force approach, which traverses the
recipe tree and seeks to solve a CSP for every possible exhaustive expansion of a.
The second algorithm, shown in Figure 8 is more sophisticated. It identifies the

Use the recipes in RP to construct the recipe tree for action a.
For each exhaustive expansion E in the tree,

Convert E and the interaction history H to a CSP C.
If there is a solution to C, output the plan for E

If no solution has been found, then fail.

Fig. 7: Brute Force Recognition Algorithm

descendants of a whose actions cannot be explained by the interaction history
and refrains from using these actions in potential solutions.

Use the recipes in RP to construct the recipe tree for action a.
Traverse the tree bottom-up. For each “OR” node corresponding to a complex action s:

If s has not been visited before, then
Use the brute-force algorithm to recognize action s given recipes RP .
If the brute-force algorithm finds a match, cache a as successful.
If a match is not found we prune the “AND” node parent of s from the tree.

If s has been visited before, and is cached as failed, then prune the “AND” node parent of s from the tree.
Call the brute-force algorithm to recognize action a given recipes RP .

Fig. 8: Bottom-Up Recognition Algorithm

Both approaches are complete, in the sense that if the user was able to solve
a TinkerPlots problem using actions in the recipe data-base, the algorithms are
able to recognize the solution. In particular, if the user solves a TinkerPlots
problem several times within the same session, the algorithms would recognize
this. However, we hypothesized that the Bottom-Up algorithm would be more
efficient than the Brute Force algorithm, because it removes all nodes for which
there is no solution from the recipe tree prior to calling the brute-force algorithm
to recognize the root.

6 Empirical Methodology

We evaluated our algorithms on interaction histories obtained from twelve adult
subjects with a broad array of educational backgrounds, varying from some high

school to some post graduate education. Each subject was given an identical
30-minute tutorial to TinkerPlots and was then asked to complete two problems
in succession. One of these was the RAIN problem; the other, called ROSA,
asked the user to build a distribution over the values of four distinct objects
and to find the likelihood of a distinct combination. We consider a plan that is
found by a recognition algorithm to be “correct” if it agreed with the opinion
of a domain expert that had access to the same inputs as did the algorithms.
For this to occur, the algorithm and domain expert had to agree not only on
whether the problem was solved by the user, but also on those actions in the
user’s interaction history that played a salient part in the solution.

We compared between the performance of three recognition algorithms: the
Brute Force and Bottom-Up techniques described above, as well as the recogni-
tion algorithm proposed by Gal et al. [5], denoted as the “Greedy” algorithm.
Four of the 24 instances that were collected were discarded because of a bug in
the data-registration facility, which failed to register some of the users’ actions.
Therefore we present results on the remaining 20 instances.

Both the Brute Force and Bottom-Up algorithms generated the same output,
so we present evaluation for both algorithms at once. We used an open-source
test-bed by Gustavo Niemeyer for solving the CSPs, available at the following
url: http://labix.org/python-constraint.

Overall, both CSP algorithms inferred correct solutions for all 20 interaction
histories, whereas the greedy algorithm inferred correct solutions for only 13 out
of the 20. The following table shows the number of times that each algorithm
identified a plan, or failed to find a plan, for the interaction histories relating to
each problem. We also show the opinions of the domain expert, which we will
consider to be the “gold standard”.

Problem Recognition Stats.
Yes No

Domain Expert ROSA 7 3
RAIN 7 3

Greedy algorithm ROSA 3 7
RAIN 4 6

CSP algorithms ROSA 7 3
RAIN 7 3

As the table shows the greedy algorithm failed to find a solution in 3 instances
of RAIN and four instances of the ROSA problem. These are considered “false-
negatives”, because the domain expert determined that solutions existed for
those problems. In contrast, the CSP algorithms agreed with the opinions of the
domain expert on all instances.

User logs range in size from 14 to 80 actions, and plans range in size from 16
to 34 actions. The average user logs for the ROSA and RAIN were 33 and 23.25
actions and the average plans found were 18.14 and 19.57 actions, respectively.

To compare the Brute Force and Bottom-Up algorithms, we collect 3 statis-
tics: the number of CSPs modeled for each log, the average number of variables

in the CSPs built for each log, and the run-time expended for each log. The Brute
Force method creates a greater number of CSPs and requires a longer run-time
than does the Bottom-Up method in 64% and 69% of cases, respectively. In all
cases, Bottom-Up creates fewer variables per constraint network. The summary
statistics are found below.

Problem Brute Force Bottom-Up
CSPs Variables Run-time (s) CSPs Variables Run-time (s)

ROSA 19 18 0.12 14 4 0.13
RAIN 9300 29 131.54 141 9 21.88

The bottleneck of both algorithms is the use of the recipe tree. The complex-
ity of the recipe tree’s construction is exponential in both the number of recipes
and the maximum number of constituents for a recipe in the recipe database. On
average, Bottom-Up creates fewer CSPs and uses fewer variables per constraint
network. Though Brute Force has a slightly shorter run-time for the ROSA
problem, Bottom-Up has a considerably shorter run-time for the RAIN prob-
lem. Scalability issues appear to be linked to the complexity of recipes rather
than the length of user logs. We measure recipe complexity by the number of
distinct plans for a problem, and we find that increased recipe complexity for a
problem corresponds to increased average run-time. In contrast, the longest user
log for each problem experienced among the shortest run-time for that problem,
and the average log size for a problem did not correspond to increased average
run-time.

7 Conclusion and Future Work

This work provided a comprehensive study of the use of constraint satisfaction
techniques towards automatic recognition of users’ activities with computer soft-
ware. We showed that under certain conditions, namely the existence of a set of
ideal solutions (recipes), this approach provides a robust, tractable and complete
solution to this problem. We evaluated our techniques in “real-world” conditions,
showing their ability to recognize users’ plans, when interacting with commercial
software for mathematics education. These algorithms were able to outperform
a related approach from the literature for inferring user-software interaction. In
future work, we wish to explore the use of these techniques in applications of rich
interaction structure between user and system, such as programming languages.
We also wish to use the solutions obtained by our algorithms to construct a
collaborative pedagogical agent that generates support for guiding the student
in the learning process. Lastly, we are exploring different representation and vi-
sualization approaches for presenting information relating to students’ plans to
teachers.

Acknowledgements

Thanks to Andee Rubin for her great help in running the user study, and for
providing comments and suggestions to sections in the paper. Thanks to Elif
Yamangil for assisting with the development of the greedy algorithm. Thanks to
Cliff Konold for helpful discussions. Thanks to Craig Miller for developing the
logging capability for TinkerPlots.

References

1. Pollack, M.: Intelligent technology for an aging population: The use of AI to assist
elders with cognitive impairment. AI Magazine 26(9) (2006)

2. Hammerman, J.K., Rubin, A.: Strategies for managing statistical complexity with
new software tools. Statistics Education Research Journal 3(2) (2004) 17–41

3. Lesh, N., Rich, C., Sidner, C.: Using Plan Recognition in Human-Computer Col-
laboration. (1999) 23–32

4. Anderson, J.R., Corbett, A.T., Koedinger, K., Pelletier, R.: Cognitive tutors:
Lessons learned. The Journal of Learning Sciences 4(2) (1995) 167–207

5. Gal, Y., Yamangil, E., Rubin, A., Shieber, S., Grosz, B.J.: Towards collaborative
intelligent tutors: Automated recognition of users’ strategies. In: Proceedings of
Ninth International Conference on Intelligent Tutoring Systems (ITS), Montreal,
Quebec

6. Bauer, M.: Acquisition of user preferences for plan recognition. In: Proceedings of
the Fifth International Conference on User Modeling. (1996) 105–112

7. Lesh, N.: Adaptive Goal Recognition. In: Proceedings of the 15th International
Joint Conference on Artificial Intelligence, Morgan Kaufmann (1997) 1208–1214

8. Conati, C., Gertner, A., VanLehn, K.: Using bayesian networks to manage uncer-
tainty in student modeling. Journal of User Modeling and User-Adapted Interac-
tion 12(4) (2002) 371–417

9. Corebette, A., McLaughlin, M., Scarpinatto, K.: Modeling student knowledge:
Cognitive tutors in high school and college. User Modeling and User-Adapted
Interaction 10 (2000) 81—108

10. C. Konold, C.M.: TinkerPlots Dynamic Data Exploration 1.0. Key Curriculum
Press. (2004)

11. Grosz, B., Kraus, S.: The evolution of sharedplans. Foundations and Theories of
Rational Agency (1999) 227–262

12. Pollack, M.: Plans as complex mental attitudes. MIT Press (1990)

