Exploring and Enforcing Application Security
Guarantees via Program Dependence

Andrew Johnson
Lucas Waye
Scott Moore

and
Stephen Chong

TR-04-14

103} 00 {G5%

Computer Science Group
Harvard University
Cambridge, Massachusetts

Exploring and Enforcing Application Security Guarantees
via Program Dependence Graphs

*
Andrew Johnson
Harvard University and
MIT Lincoln Laboratory

ajohnson@seas.harvard.edu

ABSTRACT

We present PIDGIN, a program analysis and understand-
ing tool that allows developers to explore the information
flows that exist in programs and specify and enforce security
policies that restrict these information flows. PIDGIN uses
program-dependence graphs (PDGs) to precisely capture the
information flows within a program. PDGs can be queried
using a custom query language to explore and describe infor-
mation flows in programs. A developer can specify strong in-
formation security policies by asserting that specific queries
return no results (i.e., asserting the absence of certain infor-
mation flows in the program). To check whether a program
satisfies a security policy, a developer can simply evaluate
the query against a program’s dependence graph.

The query language is expressive, supporting a large class
of precise, application-specific security guarantees. PIDGIN
can be used to explore information security guarantees in
legacy programs, or to support the specification, enforce-
ment, and modification of information security requirements
during program development.

We describe the design and implementation of PIDGIN and
report on using PIDGIN both to explore security guarantees
in existing open-source applications, and to specify and en-
force security guarantees during application development.

1. INTRODUCTION

Many computer applications store and compute with sen-
sitive information, including confidential and untrusted data.
Thus, application developers must be concerned with how
public outputs of the system may reveal confidential infor-
mation and how potentially dangerous operations may be
influenced by untrusted data.

However, applications are often developed without a clear
specification of information security requirements. Even if
application development starts with a clear information se-
curity specification, the specification typically changes dur-
ing the lifecycle of the application. Current tools and tech-
niques for building applications with strong information se-
curity (e.g., [18] 24 39} [40}, [48]) do not make it easy either to
understand the information security of an existing program,
or to modify a security policy as an application changes.
Other tools, such as taint-tracking systems (e.g., [I [51]),
may be easier to use, but support limited classes of security
policies.

*The Lincoln Laboratory portion of this work was sponsored
by the Department of the Air Force under Air Force Con-
tract FA8721-05-C-0002. Opinions, interpretations, conclu-
sions and recommendations are those of the author and are
not necessarily endorsed by the United States Government.

Lucas Waye, Scott Moore, and
Stephen Chong

Harvard University

lwaye,sdmoore,chong@seas.harvard.edu

We present PIDGIN, a system that enables strong application-

specific information security for unmodified programs writ-
ten in existing programming languages. PIDGIN allows devel-
opers both to understand the information flows in a program
and to specify and enforce restrictions on these flows. To ex-
press application-specific policies, one must understand ap-
plication requirements, and how they map to code. PIDGIN
helps this process, providing high-level views of an applica-
tion’s information flow.

PIDGIN uses program-dependence graphs (PDGs) [15] to

precisely and intuitively capture the information flows within
a program. By issuing queries in a custom query language,
developers can interrogate a program’s dependence graph
to understand its information flows. By asserting that spe-
cific queries return no results, a developer can specify strong
information security policies (i.e., the absence of certain in-
formation flows), and can easily check whether a program
enforces such policies (by executing the query against a pro-
gram’s dependence graph).

Our approach to exploring and enforcing information se-

curity has several benefits that support both the retroactive
exploration of information security guarantees offered by ex-
isting applications, and the specification, enforcement, and
modification of information security requirements during ap-
plication development.

e PIDGIN security policies are expressive, precise, and ap-

plication specific, since they are queries in an expressive
query language designed specifically for finding and de-
scribing information flows in a program. Queries can suc-
cinctly express global security guarantees such as nonin-
terference, absence of explicit information flows, trusted
declassification [21], and mediation of information-flow by
access control checks.

e Developers can quickly explore an application’s informa-

tion security guarantees. If there is no predefined specifi-
cation then PIDGIN can be used to explore the security-
relevant information flows in a program and discover and
specify the precise security policies that an application
satisfies. If a policy is specified but not satisfied, then
PIDGIN can help a developer understand why the policy is
not satisfied by finding information flows in the program
that violate the policy.

PIDGIN security policies are mot embedded in the code.
PIDGIN policies are specified separate from the code, but
may refer to entities in the code (such as classes, meth-
ods, or even specific expressions). The code does not men-
tion or depend on PIDGIN policies. This enables the use of
PIDGIN to specify security guarantees for legacy applica-
tions without requiring modification to the application.

e [Enforcement of security policies does mot prevent devel-

opment or testing. Because the program code does not
mention or depend on PIDGIN policies, the policies do not
prevent compilation or execution. This makes it possible
for developers to choose a balance between development
of new functionality and maintenance of security policies.
PIDGIN can, however, be incorporated into a nightly build
process to warn developers if recent code changes violate
a security policy that previously held.

These benefits stand in contrast to common techniques for
enforcing strong information security in programs such as
security-type systems [563] (e.g., Jif [39] and FlowCaml [46]).
In security-typed languages, security policies are broken into
many pieces and expressed via annotations throughout the
program. In the presence of declassification [45], it can be
extremely difficult to determine from these annotations how
sensitive information is handled by the system as a whole.
Changing the security policy may require modifying many
program annotations. In addition, supporting legacy appli-
cations using these techniques is often infeasible, as they re-
quire significant annotations or modifications to the applica-
tions. In contrast, PIDGIN policies are expressed as queries
that are separate from the code, in a single location, and
easily modifiable.

Dynamic or hybrid information-flow enforcement mecha-
nisms (e.g., [21[3, 8,24, 29, [18]) are sometimes able to specify
security policies separate from code, but interfere with the
deployment of systems: they must be used during testing in
order to ensure that enforcement does not conflict with im-
portant functionality. PIDGIN is purely static and does not
have any affect on deployed systems.

Static taint analysis tools (e.g., [9 14} B0, 50, 51 B5]). are
inevitably unsound because they do not account for informa-
tion flow through control channels, and do not support ex-
pressive application-specific policies. The most recent, Flow-
Droid [I], works with a pre-defined (i.e. not application-
specific) set of sources and sinks and does not support san-
itization, declassification, or access control policies. In the
SecuriBench Micro [34] suite of tests PIDGIN found 159 of a
possible 163 vulnerabilities while FlowDroid, unable to sup-
port certain classes of vulnerabilities, finds 117.

Previous work (e.g., [18, 20]) has used PDGs to enforce
certain information security guarantees. The primary con-
tributions of this work are:

1. The ability to easily express and enforce precise, application-

specific security policies for unmodified programs;

2. The design of an expressive policy language based on
graph queries used to specify and check these policies;

3. The novel insight that PDG representations also en-
able exploration and understanding of security guar-
antees in legacy applications;

4. The realization and demonstration of these techniques
in an effective tool.

Our implementation of PIDGIN supports the Java pro-
gramming language, although the techniques are applicable
to other languages. We have used PIDGIN both to discover
a diverse set of information security guarantees in several
legacy Java applications, and to specify and enforce infor-
mation security policies as part of the development process
for a simple tax application and a conference management
system. The legacy applications range in size up to 22,000
lines of application code and over 450,000 lines including li-
brary code. The security guarantees include: in a password

manager, the confidential database is protected by a mas-
ter password and the master password is not improperly
leaked; in a chat server application, only highly privileged
users are allowed to send broadcast messages and punished
users are restricted to certain kinds of messages; and in a
course management system, the high-integrity class list is
correctly protected by access control checks.

The rest of this paper is structured as follows. In Sec-
tion [2] we present an overview of our approach by explor-
ing the information security guarantees of a simple guess-
ing game program and how these guarantees are expressed
as queries in PIDGINQL, our custom graph query language.
Section [3] describes the structure of the PDGs we gener-
ate and security guarantees that can be inferred from them.
Section E| presents the query language, and Section [5| de-
scribes PIDGIN’s implementation. We relate our experience
using PIDGIN to discover, specify, and enforce information
security guarantees in Section |§| (with additional details in
the appendices). We discuss related work and conclude in
Sections [1 and

2. PIDGIN BY EXAMPLE

Consider the Guessing Game program presented in Fig-
ure This program randomly chooses a secret number
from 1 to 10, prompts the user for a guess, and then prints
a message indicating whether the guess was correct.

A program dependence graph (PDG) representation of
this program is shown in Figure Shaded nodes are program-
counter nodes, representing the control flow of the program.
All other nodes represent the value of an expression or vari-
able at a certain program point. There is a single summary
node representing the formal argument to the output func-
tion. There are three nodes representing actual arguments,
one for each call to output, and an edge from each actual ar-
gument to the formal argument. Edges labeled CD indicate
control dependencies and other edges indicate data depen-
dencies. Dashed edges and clouds indicate where we have
elided parts of the PDG for clarity. (All other emphasis is
for the exposition below. Program-counter nodes that are
not relevant to the discussion have been elided for simplic-
ity.)

Although the Guessing Game program is simple, it has in-
teresting security properties that can be expressed as queries
on the PDG.

No cheating! The program should not be able to cheat
by choosing a secret value that is deliberately different from
the user’s guess. That is, the choice of the secret should
be independent of the user’s input. This policy holds if the
following PIDGINQL query returns an empty graph:

let input = pgm.returnsOf(*‘getInput’’) in
let secret = pgm.returnsOf(‘'getRandom’’) in
pgm.forwardSlice(input) N pgm.backwardSlice(secret)

PIDGINQL is a domain specific graph query language that
enables exploration of a program’s information flows, and
specification of information security policies. Constant pgm,
short for program, is bound to the PDG of the program.
Primitive expressions (such as forwardSlice) compute a sub-
graph of the graph to the left of the dot. Query expression
pgm.returnsOf(‘‘getlnput’’) evaluates to the node in the pro-
gram PDG that represents the value returned from function
getInput (shown in a rectangle in Figure [1b)). This is the

Input from) _y, |
player

1 secret = getRandom(1, 10);)
2 "Congratulations! "
8 output (“Guess a number "+
4 “between 1 and 10”);
. = . Congratulations! " +
g int guess = getInput();
7 bool correctGuess = (secret == guess); EXP
g
8 if (correctGuess) {
9 output (“Congratulations! "+
10 guess + “ was right”);
11} else {
12 output (“Sorry, your guess” +
13 “ was incorrect”);

17 3 - MERGE

(a) Guessing Game program

return: getinput

Congratulations! " +
guess +"..."

getRandom & - - # return: getRandom
COPY COPY

EXP ~— " "7~ = ~ g EXP
secret == guess
~ P

guess = getinput() secret = getRandom...

!

-~ -

L] copv{
String.valueOf
G G
Pid FALSE
_-Exp ~ TRUE

CD CD

MERGE

MERGE
FORMAL:msg) -----""""~ w

(b) PDG for Guessing Game program

Figure 1: Guessing Game program and simplified PDG

user’s input. The second line of the query identifies the node
representing the secret value (i.e., the node representing the
value returned from function getRandom) and binds variable
secret to the result. This node is outlined with a double circle
in the PDG.

Query expression pgm.forwardSlice(input) evaluates to the
subgraph of the PDG that is in the forward slice of the node
denoted by variable input, that is, the nodes and edges that
are reachable by a path starting from the user input. This
is all of the nodes that depend on the user input, either via
control dependency, data dependency, or some combination
thereof. Similarly, pgm.backwardSlice(secret) is the subgraph
of the PDG that can reach the node representing the secret
value; it contains the nodes on which the secret value may
depend. The entire query evaluates to the intersection of
the subgraphs that depend on the user input and on which
the secret depends, i.e., all paths from the user input to the
secret.

For the PDG in Figure this query evaluates to an
empty subgraph. This means that there are no paths from
the input to the secret, and thus the secret does not depend
in any way on the user input.

Finding all nodes in the PDG that lie on a path between
two sets of nodes is a common query, and we can define it
as a reusable function in PIDGINQL as follows:

let between(G, from, to) =
G.forwardSlice(from) N G.backwardSlice(to)

For a user-defined function f, we allow Ag.f(A1, ..., An) as
alternative syntax for the expression f(Ao, A1, ..., An). This
allows us to simplify our query to:

let input = pgm.returnsOf(*‘getlnput’’) in
let secret = pgm.returnsOf(‘'getRandom’’) in
pgm.between(input, secret)

We can turn this PIDGINQL query into a security policy
(i.e., a statement of the security guarantee offered by the
program) by asserting that the result of this query should
be an empty graph. This is done in PIDGINQL by appending
“is empty” to the query.

Noninterference. Noninterference [I7], [44] requires that
information does not flow from confidential inputs to pub-
lic outputs. For our purposes, the secret number (line [1f in

Figure [la) is a confidential input, and output statements
(lines |3} [9 and are publicly observable.

We can check whether noninterference holds using a policy
that is similar to the one above:

let secret = pgm.returnsOf(*'getRandom’’) in
let outputs = pgm.formalsOf(‘‘output’’) in
pgm.between(secret, outputs) is empty

Unlike our previous example the query does not result in
an empty subgraph. Indeed, this program does not satisfy
noninterference: there are two paths from the secret to the
output (marked in Figure[IB] with bold lines) and the output
of the program does reveal information about the secret.
This is not surprising, as the functionality of this program
requires that some information about the secret is released.

From secret to output. By characterizing all the paths
from the secret to the output we can provide a guarantee
about what the public output of the program may reveal
about the secret.

Inspecting the result of the noninterference query above,
we see that there are two paths from the secret to the pub-
lic outputs. (If there were many paths, we could have iso-
lated one path to examine, by changing the last line to
pgm.shortestPath(secret,outputs).) Both paths pass through the
node representing the value of expression “secret == guess”.
This means that the public output depends on the secret
only via the comparison between the secret and the user’s
guess. We can confirm that this is the case by removing this
node from the graph and checking whether any paths remain
between the secret and the outputs. This can be expressed
in PIDGINQL as:

1 let secret = pgm.returnsOf(‘‘getRandom’’) in
2 let outputs = pgm.formalsOf(‘‘output’) in
& let check = pgm.forExpression(*‘secret == guess'’) in
4 pgm.removeNodes(check).between(secret, outputs)
5 is empty
Expression pgm.forExpression(‘‘secret == guess”ﬂ evaluates

to the node for the conditional expression (outlined with a

!For presentation reasons we refer to the specific Java ex-
pression ‘‘secret == guess’’. In a more realistic example, a
policy would likely refer instead to a function or class, which
is less brittle with respect to code changes. However, the
ability to refer to specific expressions allows developers to

dotted line in Figure . The fourth line removes this node
from the PDG then computes the subgraph of paths from
secret to outputs.

This query results in an empty subgraph, meaning that
we have described all paths between secret and outputs. Thus
the program satisfies the following policy: The secret does
not influence the output except through the comparison with
the user’s guess.

This is an example of trusted declassification [2I] and is
a common pattern found in many applications. We capture
this with a user defined policy function asserting that all
flows from sources to sinks pass through a node in declassifiers.

let declassifies(G, declassifiers, sources, sinks) =
G.removeNodes(declassifiers).between(sources, sinks) is empty

Using this function we change the last line of our policy to:
pgm.declassifies(check, secret, outputs)

Note that this policy is weaker than noninterference: the out-
put does depend on the secret. Noninterference is too strong
to hold in many real programs, and weaker, application-
specific, guarantees are common. PDGs often contain enough
structure to characterize these (potentially complex) secu-
rity guarantees, which can be stated succinctly and intu-
itively given an expressive language to describe and restrict
permitted information flows.

3. PDGS AND SECURITY GUARANTEES

PIDGIN allows programmers to explore a program’s in-
formation flows and to express and enforce security poli-
cies that restrict permitted information flows. We achieve
this using program dependence graphs (PDGs) [15] to ex-
plicitly represent the data and control dependencies within
a program. PIDGIN’s PDGs are mostly standard, and rep-
resent control and data dependencies within a whole pro-
gram (a representation also known as a system dependence
graph [23]). In this section, we describe the structure of
P1ipGIN’s PDGs and describe different kinds of security guar-
antees that can be obtained from them.

3.1 Structure of PIDGIN PDGs

There are several kinds of nodes in PIDGIN PDGs. Ez-
pression modes represent the value of an expression, vari-
able, or heap location at a program point. Program-counter
nodes represent the control flow of a program, and can be
thought of as boolean expressions that are true exactly when
program execution is at the program point represented by
the node. In addition, procedure summary nodes facilitate
the interprocedural construction of the PDG by summa-
rizing a procedure’s arguments, return value, etc. Finally,
merge nodes represent merging from different control flow
branches, similar to the use of phi nodes in static single as-
signment form [12]. Each node also contains metadata, such
as the position in the source code of the expression the node
represents.

PipGIN PDGs are context sensitive: nodes associated with
a procedure have multiple copies, one for each analysis con-
text in which the procedure occurs. Our analysis contexts
arise from an object-sensitive pointer analysis, and thus our
PDGs are object sensitive. They are also flow sensitive, in
that a local variable within a procedure may have several
nodes in the PDG representing its value at different program

precisely specify queries and policies if needed.

points. However, PIDGIN treats heap locations flow insensi-
tively: a given abstract heap locatiorﬂ has only one node in
the PDG to represent values stored in that location. The lat-
ter is not a fundamental restriction but a trade off between
PDG size and precision.

Edges of the PDG indicate data and control dependencies
between nodes. To improve precision and enable more com-
plex queries, edges in PIDGIN PDGs have labels that indicate
how the target node of the edge depends on the value rep-
resented by the source node of the edge. Examples of these
edge labels can be seen in Figure COPY indicates that
the value represented by the target is a copy of the value
represented by the source. EXP indicates that the target is
the result of some computation involving the source. Edges
labeled MERGE are used for all edges whose target is a merge
or summary node.

Label CD indicates a control dependency from a program-
counter node to an expression node, for example the edges
from the program-counter nodes to the actual arguments in
Figure An expression is control dependent on a program-
counter node if it is evaluated only when control flow reaches
the corresponding program point. An edge labeled TRUE or
FALSE from an expression node to a program-counter node
indicates that the control flow depends on the boolean value
represented by the expression node.

3.2 Security guarantees from PDGs

As Section [2| demonstrated, paths in a PDG can corre-
spond to information flows in a program. PIDGIN allows de-
velopers to discover, specify, and enforce information secu-
rity guarantees by using a program’s PDG to explore and
restrict the information flows present in the program.

Security guarantees are application specific, since what is
regarded as sensitive information and what is regarded as
correct handling of sensitive information varies greatly from
application to application. The query language PIDGINQL
(described in Section provides several convenient ways for
developers to indicate sources and sinks, such as queries that
select nodes that represent the values returned from a partic-
ular function. PIDGIN can be used to describe many complex
policies, however, there are similarities in the kinds of secu-
rity guarantees that developers can express using PDGs.

Noninterference. The absence of a path in a PDG from a
source to a sink indicates that noninterference holds between
the source and the sink. This result was proved formally by
Wasserrab et al. [54]. As seen in Section [2| this is equivalent
to the PIDGINQL query pgm.between(source, sink) evaluating
to an empty graph.

Noninterference is a strong guarantee, and many appli-
cations that handle sensitive information will not satisfy
it: the query pgm.between(source,sink) will result in a non-
empty graph. For example, a web application that receives
untrusted input from a client and must construct a database
query using this untrusted data does not satisfy noninter-
ference from the untrusted input to the database. Similarly,
an authentication module doesn’t satisfy noninterference be-
cause it needs to reveal some information about passwords
(specifically, whether a user’s guess matches the password).

Even when noninterference does not hold, developers need

2An abstract heap location is a static analysis entity that
represents zero or more concrete heap locations (e.g., fields of
objects) that may exist at run time. Abstract heap locations
are typically determined by pointer analysis.

assurance that the program handles sensitive information
correctly. For example, a developer may want all untrusted
input to be passed to a special escapeSQL function before
being given to the database or may want the return result of
the authentication module to depend on the password only
via an equality test with the guess. In the remainder of this
section, we describe security guarantees that are weaker than
noninterference and can be expressed as queries on PDGs.

No explicit flows. A coarse-grained notion of information-
flow control considers only explicit information flows and
ignores implicit information flows [13]. This is also known
as taint tracking and corresponds to considering only data
dependencies and ignoring control dependencies.

Although arbitrary information may flow due to control
dependencies, it can be useful and important to show that
there are no explicit information flows from sensitive sources
to dangerous sinks. Indeed, the prevalence of taint-tracking
mechanisms (e.g., Perl’s taint mode, and numerous systems
[11 @, [30, 51} 55]) show that it is intuitive and appealing for
developers to consider just explicit flows. Moreover, tracking
only explicit flows leads to fewer false positives (albeit at the
cost of more false negatives) [14} 26] .

Restricting attention to data dependencies is straightfor-
ward with a PDG. Specifically, if all paths from sensitive
sources to sensitive sinks have at least one edge labeled CD
(i.e., a control dependency from a program-counter node to
an expression node), then there are no explicit flows from the
source to the sink. This can be expressed by the following
PIDGINQL policy function:

let noExplicitFlows(sources, sinks) =
pgm.removeEdges(pgm.selectEdges(CD))
.between(sources, sinks) is empty

Query pgm.removeEdges(pgm.selectEdges(CD)) selects all edges
labeled CD in the PDG and removes them from the graph.
Using this graph, query between(sources, sinks) finds the sub-
graph containing paths between sources and sinks. If the whole
query results in an empty graph, then there are no explicit
flows between the source and sinks.

Often a program intentionally contains explicit flows (e.g.
a program which prints out the last four digits of a credit
card number). To obtain guarantees in this case, a more
precise policy is needed.

All information flows described. In general, a devel-
oper can specify a security policy by describing all permit-
ted paths from sensitive sources to dangerous sinks. This is
because paths in the PDG correspond to information flows
in the program. Using the query language, the developer
can enumerate the ways in which information is permitted
to flow. If, after removing paths corresponding to these per-
mitted information flows, only an empty graph remains then
all information flows in the program are permitted, and the
program satisfies the security policy. The “no explicit flows”
example can be viewed in this light (i.e., the policy requires
that all paths from a source to a sink must involve a control
dependency), but more expressive characterizations of paths
are often necessary, useful, and interesting.

For example, consider a program which takes a (secret)
credit card number and prints the last four digits. This
is an intentional explicit flow (most taint analysis frame-
works would mark this as a security violation). The follow-
ing PIDGINQL policy requires that all paths from the credit
card number to the output go through the return value of

1 if (checkPassword(pwd))
2 if (user.isAdmin())
3 output (getSecret());

(a) Access control program

RETURN:
checkPassword

TRUE

TRUE RETURN: isAdmin
FORMAL:
msg o

(b) Relevant fragment of PDG
Figure 2: Access control example

method, lastFour.

let ccNum = ... in

let output = pgm.formalsOf(‘‘output’’) in

let lastFourRet = pgm.returnsOf(‘‘lastFour’") in
pgm.declassifies(lastFourRet, ccNum, output)

Recall pgm.declassifies(lastFourRet, ccNum, output) (defined in
Section [2) which removes the nodes lastFourRet from graph
pgm, and asserts that in the resulting graph there are no
paths from ccNum to output.

This policy treats method lastFour as a trusted declassi-
fier [21]: information is allowed to flow from ccNum to output
provided it goes through the return value of lastFour be-
cause lastFour is trusted to release only limited information
about credit card numbers. Determining whether lastFour
is in fact trustworthy is beyond the scope of this work.
Trustworthiness of lastFour could, for example, be achieved
through a code review, or through formal verification of its
correctness. Nonetheless, this PIDGINQL policy provides a
strong security guarantee, and reduces the question of cor-
rect information flow in the entire program to the trustwor-
thiness of one specific method.

Conditions for information-flow described. In some
cases it is important to know not just the flows from sensitive
sources to dangerous sinks, but also under what conditions
these flows occur. Using PDGs, we can extract this infor-
mation by considering control dependencies of nodes within
a path. This is difficult for most existing information-flow
analyses, as the conditions under which a flow occurs are
not properties of the path from source to sink.

For example, consider the program in Figure which is
a simple model of an access control check guarding informa-
tion flow. Secret information is output at line [3] but only if
the user provided the correct password (line|l)) and the user
is the administrator (line[2). If we look at the relevant frag-
ment of the PDG for this program (Figure we see that
there is a single path from a sensitive source (the double-
circled node for the return from the getSecret function) to a
dangerous sink (the bold node representing the formal argu-
ment to output). But by examining the control dependencies
for one of the nodes on this path, we can determine that this
flow happens only if both access control checks pass. That
is, the potentially dangerous information flow happens only
when the user has correctly authenticated as the administra-
tor: all paths from the sensitive source to the dangerous sink
are control dependent on both “checkPassword” and “isAdmin”
returning true. We can describe this with the policy:

1 let sec = pgm.returnsOf(‘‘getSecret’’) in
2 let out = pgm.formalsOf(*‘output’) in

3 let isPassRet = pgm.returnsOf(‘‘checkPassword’") in

4 let isAdRet = pgm.returnsOf(*‘isAdmin’’) in

5 pgm.removeControlDeps(pgm.[isAdRet && isPassRet])
6 .between(sec,out) is empty

The queries on lines [I] and [2] find the PDG nodes for the
return values of the secret and output functions, respec-
tively. The query pgm.[isAdRet && isPassRet] finds any pro-
gram counter nodes in the PDG corresponding to program
points that can be reached only when checkPassword and
isAdmin return true. The primitive removeControlDeps(E) re-
moves nodes from the graph that are control dependent
on any program counter node in E. Intuitively, the graph
pgm.removeControlDeps(pgm.[isAdRet && isPassRet]) is the re-
sult of removing all nodes that are reachable only when the
password is correct and the user is the admin.

User-defined functions can express such access control poli-
cies. The following function asserts that information flows in
graph G from sources to sinks only when access control checks
represented by checks succeed:

let flowAccessControlled(G, checks, sources, sinks) =
G.removeControlDeps(checks).between(sources,sinks)
is empty

The example policy is now more readable and intuitive:

let sec = pgm.returnsOf(*‘getSecret’’) in

let out = pgm.formalsOf(‘‘output’’) in

let isPass = pgm.returnsOf(‘‘checkPassword"’) in

let isAd = pgm.returnsOf(‘‘isAdmin’") in
pgm.flowAccessControlled(pgm.[isAd && isPass],sec,out)

In the example above, access control checks protect infor-
mation flow from a confidential source to a public output. A
simpler pattern is when access control checks guard whether
a sensitive operation can be executed. The following policy
function asserts that execution of sensitiveOps (representing
some sensitive operation, such as calls to an executeQuery
function that executes SQL queries) occurs only when ac-
cess control checks represented by checks succeed:

let accessControlled(G, checks, sensitiveOps) =
G.removeControlDeps(checks) N sensitiveOps
is empty

4. QUERYING PDGS WITH PidginQL

We have developed PIDGINQL, a domain-specific language
that allows a developer to explore information flows in a pro-
gram, and to specify security policies that restrict informa-
tion flows. PIDGINQL is a graph query language, specialized
to express readable and intuitive queries relevant to infor-
mation security. The grammar for PIDGINQL is shown in
Figure [3] The grammar includes let statements, functions,
graph composition operations, and primitives that are useful
for expressing information security conditions.

Queries and expressions. A query @ is a sequence of
function definitions followed by a single expression. Expres-
sions evaluate to graphs. There is a single constant expres-
sion, pgm (short for program), which always evaluates to the
original program dependence graph for the program under
consideration. A primitive expression PF is a function on a
graph: Ey.PFE evaluates Ey to a graph Go, and the primitive
operation returns a subgraph of Gy, computed according to
the semantics of the specified operation (which we describe
in more detail below and throughout the paper). Expression
E1UE; evaluates Fq and E» to graphs G7 and G2 respec-

Query Q:=FQ |E

Policy P:=F P |Eisempty |p(4o, ..., Ayn)
Function F = let f(zo, ..., xn) = E;
Definition | let p(xo, ..., zn) = E is empty;

Ezxpression E :=pgm |E.PE |E1 UE>, | Ex N Es
| let x = E1 in Es |1’ |f(A0, ey An)

Argument A == FE | EdgeType | NodeType
| JavaExpression | ProcedureName
Primitive PE ::
Ezxpression

= forwardSlice(E) | backwardSlice(E)
| shortestPath(£, Es)

| removeNodes(E) | removeEdges(E)
| selectEdges(EdgeType)

| selectNodes(Node Type)

| forExpression(JavaEzpression)

| forProcedure(ProcedureName)

| findPCNodes(E, EdgeType)

| removeControlDeps(E)

EdgeType ::= CD | EXP | TRUE | FALSE |...
NodeType ::= PC | FORMAL | EXPR |...
Figure 3: PIDGINQL grammar

tively and returns the union of G; and G». Similarly, E1NE>
evaluates both F1 and E» and returns the intersection of the
results. Expressions also include let bindings, variable uses,
and invocations of user-defined functions.

Policies. A policy P is a sequence of function definitions
followed either by an assertion that expression F evaluates
to an empty graph (E is empty) or an invocation of a user-
defined policy function (which will assert that some expres-
sion evaluates to an empty graph). As discussed in Sections
and 3| if a query, @, considers all information flows from
sources to sinks, and removes only permitted flows, and Q
results in an empty graph when evaluated on a program’s
PDG, then the program contains only permitted information
flows. Evaluating a policy results in an error if the assertion
fails, i.e., if the query does not evaluate to an empty graph.
Policies are not typically used when interactively explor-
ing information flows in a program, since the non-empty re-
sult of a query can be examined and further explored to un-
derstand the information flows present in a program and/or
discover security violations. Policies are, however, useful for
enforcement and regression testing to determine whether a
modified program still satisfies a security guarantee.

Primitive operations. PIDGINQL contains several prim-
itive operations for exploring information flows in programs
and specifying restrictions on permitted information flows.
These are described throughout the paper; due to space con-
straints we only briefly describe some here.

Expression forwardSlice is useful for selecting everything
influenced by sensitive sources and backwardSlice for selecting
everything that influences critical sinks. Both forwardSlice
and backwardSlice may take another argument (not shown
in the grammar) that controls the depth of the slice, for
example to select the immediate successors of a node.

Expression Eg.shortestPath(E1,E3) is useful during explo-
ration to find a simple path remaining after executing a
query, which can help identify vulnerabilities or missing se-
curity conditions.

Expression Eo.findPCNodes(E7, EdgeType) is used to find
program counter nodes in Fy that correspond to control-flow

decisions based on expressions in F1. Edge type EdgeType
must be either TRUE or FALSE. If Ey and F, evaluate to
graphs Go and G respectively, Ey.findPCNodes(E1, TRUE)
evaluates to the program counter nodes in Gy that are reach-
able only by a TRUE edge from some expression node in
G1. That is, the program point corresponding to a program
counter node in Ejy.findPCNodes(E1, TRUE) will be reached
only if some expression in GG evaluates to true. It is useful
to combine the results of findPCNodes queries. For example,
pgm.findPCNodes(a, TRUE) N pgm.findPCNodes(b, FALSE) will
evaluate to the program counter nodes for program points
that are reached only when an expression denoted by a eval-
uates to true and an expression denoted by b evaluates to
false. We add syntactic sugar to describe these combinations
using boolean expressions in square brackets, simplifying the
example to pgm.[a && !b].

Finally expression Eg.removeControlDeps(E1) can be used
in combination with findPCNodes, for removing nodes that
are control dependent on a boolean expression. In Section [3]
we use removeControlDeps to define access control policies.

Any primitive expression that takes a ProcedureName or
JavaEzpression as an argument will raise an error if it evalu-
ates to an empty graph. This restriction is to avoid trivially
empty query results due to mistyped specifications of sources
or sinks, and to ensure that API changes, such as changing
a method name, will trigger an evaluation error until a cor-
responding change is made to the PIDGINQL policy.

User-defined functions. PIDGINQL allows functions to
be defined with the two constructs let f(zo,...,z,) = E and
let p(zo,...,zn) = E is empty. Function definitions are either
graph functions (which will evaluate to a graph) or pol-
icy functions (which assert that some expression evaluates
to an empty graph)ﬂ Functions are invoked with syntax
f(Ao, ..., An). We also support Ag.f(A1,...,A,) as alterna-
tive syntax to allow user-defined functions to be easily com-
posed with other operations.

Examples of user-defined functions in Sections[2]and [3]are
between, formalsOf, returnsOf, and entriesOf. For example, the
function formalsOf(G, ProcedureName), which finds all formal
arguments in G for procedures matching ProcedureName, is
defined as:

let formalsOf(G, ProcedureName) =
G.forProcedure(Procedure Name).selectNodes(FORMAL)

User-defined functions are a powerful tool for building
complex queries and policies. We have identified useful (non-
primitive) operations and defined them as functions. In our
query evaluation tool, these definitions are included by de-
fault, providing a rich library of useful functions, including
between, declassifies, noExplicitFlows, and flowAccessControlled.

S. IMPLEMENTATION

PIDGIN has two distinct components. The first component
analyzes Java programs and produces PDGs. The second
component evaluates queries against a PDG, and can be
used either interactively or in “batch mode”. The interac-
tive mode displays results of queries in a variety of formats,
and is useful for developers to explore the information flows
in a program, for example to explore security guarantees in

3For presentation purposes, we syntactically distinguish
graph functions and policy functions; in the implementation
using a policy function where a graph function is expected
will result in an evaluation error rather than a parsing error.

legacy programs, or to find information flows that violate a
given policy. The ability to interactively query a program to
discover and describe information flows is a novel contribu-
tion of this work. Batch mode simply evaluates PIDGINQL
queries and policies and is useful for checking that a pro-
gram enforces a previously specified policy (e.g., as part of
a nightly build process). In this section we describe the im-
plementation of these two components.

5.1 PDGs for Java programs

We construct PDGs for Java programs using an inter-
procedural analysis implemented in the Accrue Interpro-
cedural Java Analysis Framework, a framework for pointer
analysis and interprocedural analysis of Java programs we
have developed and publicly released. Accrue enables whole-
program analysis of Java 1.6 source code by performing flow-
insensitive pointer analysis and using the resulting points-to
graph to guide the analysis of code. For PDG construction,
we use a uniform hybrid pointer analysis [25], which provides
benefits of both object-sensitive and call-site sensitive analy-
ses. (Specifically, we use a uniform 2-type-sensitive analysis
with 1-context-sensitive heap analysis.)’| Accrue efficiently
manages interprocedural analyses, and re-analyzes code in a
given context only when necessary.

Accrue comprises about 36,000 non-comment non-blank
lines of code. The interprocedural analysis pass that con-
structs PDGs is approximately 5,000 additional lines of code.

PDG construction pass. We construct PDGs for Java
programs via an interprocedural dataflow analysis. The anal-
ysis is flow sensitive for local variables, but for scalability is
flow insensitive for heap locations. PDG construction is also
context sensitive: a method may be analyzed multiple times,
which produces a larger PDG but simplifies precise querying
of the resulting PDG (cf. Reps and Rosay [42]).

The PDG construction analysis handles all language fea-
tures of Java 1.6 except reflection and concurrency. We rea-
son about implicit RuntimeExceptions that may be thrown by
statements and expressions. We create special PDG nodes
to identify control-flow branches due to these exceptions.

The precision of the PDG-construction analysis is im-
proved by several analyses provided by the Accrue frame-
work, including a non-null analysis (which determines when
expressions are never null) and a precise exception analysis
(which determines the exact types of exceptions that may be
thrown by methods). These analyses improve the precision
of the control-flow graph on which the PDG-construction
dataflow analysis is performed.

Library functions. For both the pointer analysis and
PDG construction we analyze the source code of most of
the JDK at the same time we analyze the application code
to ensure precision with respect to library functions. We use
signatures for some of the core classes (e.g. java.lang.String
and java.lang.System) in order to improve efficiency and
precision. Signatures directly describe the analysis results for
methods and constructors instead of examining the relevant
source code. In addition, we provide analysis result signa-
tures for some native methods. For native methods without
signatures and library functions for which we do not have
source code, we assume that the return values of the meth-

“While a single pointer analysis was sufficient for the case
studies in Section[6] Accrue can be run with different pointer
analyses to trade-off between precision and run time.

Program || Policy Time (s) Policy
] Mean | SD LoC

CMS B1 5.3 0.6 3
4.1 0.05 5

FreeCS 4.0 0.08 6
26.9 0.2 37

UPM 6.6 0.1 6
6.2 0.04 4

5.0 0.06 11

Game 0.043| 0.001 3
0.41 | 0.01 4

PTax 0.67 | 0.01 4
0.40 | 0.01 4

2.0 0.03 7

PChair 0.47 | 0.01 13
0.44 | 0.01 12

Figure 5: Query evaluation times

ods depend only on the arguments and the receiver, and that
the methods have no heap side-effects. These assumptions
are potential sources of unsoundness in our analysis.

5.2 PidginQL Query Engine

We have implemented a custom query engine for our query
language PIDGINQL that evaluates queries against PDGs.
We created a custom query engine for flexibility and fast
prototyping of the query language. We believe the query
language could be implemented on top of an existing graph
query language and engine such as Cypher or Gremlin [22].

The query evaluator is written in 5,800 lines of Java code.
It implements call-by-need semantics and caches subquery
results. This improves performance, particularly when used
interactively, since subqueries are often reused: when explor-
ing information flows with PIDGIN, a user typically submits
a sequence of similar queries.

6. CASE STUDIES

In this section we demonstrate the feasibility of our ap-
proach by using PIDGIN to develop application-specific se-
curity policies for off-the-shelf programs and to support new
development.

We have applied PIDGIN to six Java programs. For three
legacy applications there was no predefined specification and
we used PIDGIN to explore the information flows and dis-
cover precise security policies that these applications satisfy.
These were a medium-sized web-based Course Management
System (CMS); and two medium-sized open-source appli-
cations, Free Chat-Server (FreeCS) and Universal Password
Manager (UPM). We also used PIDGIN to develop the Guess-
ing Game example in Figure[I] For two small applications we
wrote ourselves, PTax and PChair, we used our system to
support simultaneous application and policy development.
In Appendix [A] we present the results of running on the Se-
curiBench Micro benchmark [34]; in which we detect 159
of the 163 vulnerabilities. The diversity and specificity of
the policies described below demonstrate the flexibility and
expressivity of PIDGINQL.

6.1 Analysis performance

The first two columns of Figure [4] present the number of
non-comment non-blank lines of code and the number of
procedures in each program. As described in Section [5.1] we
analyze JDK source code in addition to application code;
numbers in parentheses indicate lines of code and number

of procedures including JDK source code.

Figure [4 also summarizes the performance of the pointer
and PDG construction analyses for each program, giving the
mean and standard deviation (SD) of ten runs. All analyses
were performed on a quad core, 2GHz, Intel Core i7 Mac-
Book Pro laptop with 16GB of RAM.

Figure[f]summarizes query evaluation times for all queries
discussed in this section, based on ten evaluations. Query
times are reported for a cold cache (i.e., with no previously
cached results for subqueries). All queries evaluated in under
30 seconds, and all but one in under 7 seconds. The last
column in Figure [f] gives the number of lines for each policy.
Note that query size depends on the complexity of the policy,
but appears to be independent of program size.

6.2 Course Management System (CMS)

CMS [6] is a J2EE web application for course management
that has been used at Cornell University since 2005. We used
a version of CMS that replaces the relational database back-
end with an in-memory object database. CMS uses the mod-
el/view/controller design pattern. We examined the security
of the model and controller logic; views simply display the
final computed results.

Policy B1. Only CMS administrators can send a message
to all CMS users.

This is a typical access control policy, ensuring that the
function used to send messages to all users, is called only
when the current user is an administrator.

let addNotice = pgm.entriesOf("addNotice”) in
let isAdmin = pgm.returnsOf("isCMSAdmin”) in
pgm.accessControlled(isAdmin, addNotice)

Policy B2. Only users with correct privileges can add stu-
dents to a course.
This five line query is similar to Policy

6.3 Free Chat-Server

Free Chat-Server is an open-source Java chat server that
has been downloaded from SourceforgeEI over 90,000 times.
Once the chat server has started, users can send messages to
one another, maintain friend lists, create, join and manage
group chat sessions, and perform other actions. Administra-
tors can ban, kick, and punish misbehaving users.

Policy C1. Only “God” users can send broadcast messages.

We used PIDGIN to confirm that the ability to send mes-
sages to all users is available only to users with the right
ROLE_GOD. This can be described with an access control pol-
icy similar to others previously presented. However, while
exploring the information flows present in this program,
we realized that our initial definition of what constituted
a “broadcast message” was imprecise. PIDGIN enabled us to
quickly find this apparent violation of the policy and refine
our security policy appropriately.

Policy C2. Punished users may only perform certain ac-
tions.

Misbehaving users can be disciplined by setting a punished
flag in the object representing the user. In the PDG for Free
Chat-Server, there are 357 sites where actions can be per-
formed, all of which are invocations of the same method. We
developed a PIDGINQL policy that precisely describes which
actions a punished user may perform by using PIDGIN to in-
teractively explore information flows, focusing on calls to the

®http:/ /sourceforge.net/projects/freecs/

Size (w/ JDK source) Pointer Analysis PDG Construction
Program LoC Procedures Time (s) Nodes Edges Time (s) Nodes Edges
Mean| SD Mean| SD
CMS 15,508 (466,874) | 1,345 (47,019) | 550 | 35.0 | 368,561 | 5,062,102 | 448 | 23.9 | 1,907,260 | 3,651,370
FreeCS 22,149 (448,215) | 1,340 (45,077) | 126 5.1 | 335,380 | 4,281,565 | 300 | 13.8 | 1,688,069 | 3,290,920
UPM 4 052 (332,396) 532 (32,260) | 146 | 10.5 | 296,894 | 4,248,109 | 366 | 6.4 | 1,695,513 | 3,006,171
Game 0 (166,319) 6 (17,351) 17 1.0 | 80,946 670,315 | 34 | 04 422,323 770,291
PTax 262 (167,875) 24 (17,560) 18 1.2 90,360 790,848 | 36 | 0.3 481,835 873,028
PChair 320 (166,448) 55 (17,455) 17 1.5 84,030 696,254 | 35 1.3 438,940 798,292

Figure 4:

“perform action” method that were not access controlled by
the punished flag. The final policy is 37 lines of PIDGINQL,
the largest we have developed.

6.4 Universal Password Manager (UPM)

UPM is an open-source Java password management appli-
cation. Users store encrypted account and password infor-
mation in the application’s database and decrypt them by
entering a single master password. It has been downloaded
from Sourceforgeﬁ almost 70,000 times.

Policy D1. A database is opened only after the master pass-
word is checked or when creating a new database.

Method doOpenDatabaseActions is called to open the pass-
word database. We confirmed that this occurs only in the
newDatabase method or when protected by appropriate checks
of the master password.

Policy D2. The user’s master password entry does not ex-
plicitly flow to the GUI, console, or network.

When we consider only the data dependencies in the pro-
gram, there is no information flow from the user’s password
entry to any of the Java Swing GUI classes or any other
public output. The PIDGINQL policy is:

let passwordInput = pgm.returnsOf("askUserForPassword”) in

let output = pgm.formalsOf("javax.swing”) or
pgm.formalsOf("OutputStream”) or
pgm.formalsOf("HTTPTransport”) in

pgm.noExplicitFlows(passwordInput,output)

Policy D3. The user’s master password entry does not in-
fluence the GUI, console, or network inappropriately.
When we consider control dependencies, we find that the
user’s master password entry may influence public outputs,
but only in appropriate ways (through trusted declassifiers).
Note that an incorrect or invalid password results in an error
dialog box, and our policy accounts for this information flow.

6.5 Guessing Game

We implemented a Java version of the program listed in
Figure [I] The following policies, described in more detail in
Section [2] hold for the Guessing Game.

Policy E1. The secret does not depend in any way on the
user input.

Policy E2. The secret does not influence the output except
through the comparison with the user’s guess.

6.6 PTax

PTax is a toy tax computation application. PTax supports
multiple users who login with a username and password and
input their tax information (specifically, their salary). This
sensitive information is stored in a file to be accessed by
the user at a later time, provided the user supplies the cor-
rect password. Before development, we defined a number
of PIDGINQL policies we expected to hold. As development

Shttp://upm.sourceforge.net,/

Program sizes and analysis results

progressed, the policies were iteratively refined to reflect im-
plementation choices (e.g., names of methods, signature of
the authentication module), although the intent of the poli-
cies remained the same.
Policy F1. Public outputs do not depend on a user’s pass-
word, unless it has been cryptographically hashed.

This can be expressed as the PIDGINQL policy:

let passwords = pgm.returnsOf(‘‘getPassword’’) in

let outputs = pgm.formalsOf(‘‘writeToStorage'") U
pgm.formalsOf(‘*‘print”’) in

let hashFormals = pgm.formalsOf(‘‘computeHash’’) in

pgm.declassifies(hashFormals, passwords, outputs)

This trusted-declassification policy is similar to Policy
The declassifies function ensures that the only information
flow from the user’s password to public outputs are through
the argument to the hash function.

Policy F2. Tax information is encrypted before being writ-
ten to disk.

The PIDGINQL query is similar to that for Policy [F1]
Policy F3. Tax information is not decrypted unless the
user’s password is entered correctly.

Policy is an access control policy, whose exact state-
ment depends on the specification of the userLogin method.

6.7 PChair

PChair is a toy conference management system. There are
five user roles: author, reviewer, program committee mem-
ber, program chair, and system administrator. A user may
have multiple roles. PChair handles the submission, revi-
sion, and reviewing of papers. We analyzed only the back-
end which maintains and controls access to the review and
paper databases.

Access control policies in conference management systems
can be intricate and complex. For example, several infor-
mation leaks have been found and fixed in HotCRP [27].
We used PIDGIN throughout development, updating policies
as the implementation evolved. Several features were added
during development, affecting the functionality of the system
and requiring modifications to the PIDGINQL policies. For
example, we added the ability for authors and PC members
to list conflicts, and needed to update Policy [G1] to prevent
PC members from viewing reviews of conflicted papers. In
total, we defined fourteen policies for PChair. We present
two representative policies here.

Policy G1. A review can be viewed only by an authorized
user.

Naturally, the complexity of the PIDGINQL policy for Pol-
icy lies in the definition of “authorized user,” which is
very specific to the conference management application. For
example, PC members can access any review after the review
submission deadline has passed, unless they have a conflict,
and authors of a paper can access reviews for that paper af-
ter the notification deadline. The PIDGINQL describing the

condition for safe review access is:

let check = pgm.[isAdmin ||
(isAuthorOf && notifyDeadlinePast) ||
(isPC && reviewDeadlinePast && 'hasConflict) ||
isReviewerOf]

where isAdmin, isAuthorOf, etc refer to the return values of
functions with the same names.

An additional policy (not shown) confirms that calls to
getReview and the access control checks (isAuthor0Of and
hasConflict) refer to the same paper, i.e., the same argu-
ment is passed to each.

Policy G2. A paper’s acceptance status can be released only
to an author of the paper after the notification deadline, or
to PC members without conflicts.

The PIDGIN policy ensures that all flows from return val-
ues of isAccepted to the client are protected by the correct
access check.

... // output = errors or responses sent to the client

... // define deadline, role, and conflict checks

let isAccepted = pgm.returnsOf(‘‘isAccepted’’) in

let check = pgm.[(isAuthorOf && notifyDeadlinePast) ||
(isPC && !hasConflict)] in

pgm.flowAccessControlled(check, isAccepted, output)

During development, we discovered that this policy was
not enforced. After the notification deadline, only accepted
papers can be updated. If a user tries to update a rejected
paper or update a paper before the deadline, an error mes-
sage is displayed. However, which error message was dis-
played revealed information about whether or not the paper
had been accepted. This implicit information flow leaked in-
formation about the paper’s acceptance status. PIDGIN pro-
vided enough information to identify this subtle violation
and find the bug, which was easily fixed by checking the
notification deadline before checking acceptance status.

7. RELATED WORK

PDGs for security. In a series of papers, Snelting and
Hammer (and collaborators) argue for the use of PDGs for
information-flow control, due to the precision and scalability
of PDGs. They have developed JOANA, an object-sensitive
and context-sensitive tool for checking noninterference in
Java bytecode [I8], shown their techniques to be sound [54],
and considered information flow in concurrent programs [16].
They have also used path conditions to improve the precision
of PDGs, ruling out impossible paths in the PDG [20, [49].
Hammer et al. [I9] consider enforcement of a form of where
declassification [45] using PDGs.

The key differences between our work and previous work
using PDGs for information-flow control is that (1) our query
language allows for expressive, precise, application-specific
policies that are separate from code; and (2) we seek to
use the PDG to enable exploration of security guarantees
of programs in addition to enforcement of explicitly speci-
fied security guarantees. Existing techniques for improving
the precision and scalability of PDGs are applicable to our
work. We seek to benefit from these techniques in the future.

Program dependence graphs were introduced by Ferrante
et al. [I5], along with an algorithm to produce them. PDGs
were presented as an ideal data structure for certain intra-
procedural optimizations. Program slicing for an interpro-
cedural extension to PDGs is introduced by Horwitz et al.
[23]. Program slicing is useful for describing security guar-

10

antees and is built into PIDGINQL as primitive expressions
forwardSlice and backwardSlice. Reps and Rosay [42] general-
ize slicing on PDGs and define program chopping, of which
the PIDGINQL function between, defined in Section [2] is an
example. Cartwright and Felleisen [7] formalize PDGs and
give a denotational semantics derived from the semantics
of the original program. Bergeretti and Carré [5] use struc-
tures similar to PDGs to automatically find bugs in while
programs and increase program understanding.

Legacy applications and policy inference. PIDGIN sup-
ports discovering information security guarantees for legacy
applications. Rocha et al. [43] present a framework that al-
lows declassification policies to be specified for legacy ap-
plications. Policies are separate from code (but, like ours,
may refer to program entities such as functions). Enforce-
ment of policies is checked using expression graphs, which,
like PDGs, capture data and control dependencies. Secu-
rity policies are specified as graphs that describe which ex-
pression graphs can be declassified. The security policies of
PIDGIN similarly provide a mechanism to describe what in-
formation flows are permitted in a legacy application. Un-
like the framework of [Rocha et al., PIDGIN supports a rich
class of security policies and allows developers to explore the
information flows in an application, and thus provides sup-
port for deciding what security policy is appropriate for an
application. By contrast, |[Rocha et al.| only discuss declas-
sification and do not consider how developers produce ap-
propriate security policies. Moreover, we have implemented
our approach for the Java programming language; to the
best of our knowledge, |Rocha et al.|do not implement their
framework, nor consider how to extend their techniques to
a full-fledged programming language.

Other work seeks to infer security policies for existing pro-
grams. Vaughan and Chong [52] use a data-flow analysis to
infer expressive information security policies that describe
what sensitive information may be revealed by a program.
King et al. [26], Pottier and Conchon [41], Smith and Thober
[47], and the Jif compiler [38},[39] all perform various forms of
type inference for security-typed languages. Mastroeni and
Banerjee [37] use refinement to derive a program’s semantic
declassification policy. We do not currently support auto-
matic inference of security policies from a PDG. We instead
provide the developer with tools and abstractions to help
them explore the information flows present in a program.

Several analyses infer explicit information flows (e.g., [32
33, 35]). While efficient and practical, these analyses do not
track implicit flows and may be inadequate in settings where
strong information security is required. As described in Sec-
tion [3] PIDGIN also supports exploration of explicit informa-
tion flows, and policies for explicit information flows.

Enforcement of expressive policies. Many tools and
techniques seek to enforce expressive and strong information
security policies. Security-type systems (e.g., [39,[46] 53]) are
the main technique used to enforce such policies. The survey
by Sabelfeld and Myers [44] provides an overview of these
security policies and enforcement techniques. More recently,
Banerjee et al. [4] combine security-types with an expressive
logic for describing a program’s declassification policy and
Nanevski et al. [40] use an expressive type-theoretic verifi-
cation framework to specify and enforce rich information-
flow properties. The security guarantees we consider in Sec-
tion are related to the security policies considered in

these previous works. The absence of paths from sources to
sinks corresponds to noninterference. Requiring all paths to
go through certain nodes (such as the formal argument of
a sanitization function) is a form of trusted declassification
(e.g. [21), B6]). Reasoning about the conditions under which
potentially dangerous information flows occur is similar to
reasoning about when declassification is permitted [I0} [45].
Restricting attention to only explicit information flows is
equivalent to a static taint analysis (e.g., [1} [32] 33, [35] [51]).

8. CONCLUSION

‘We have designed and implemented PIDGIN, a tool that al-
lows developers to understand how information flows within
a program, and to specify and enforce strong information
security policies. PIDGIN uses program dependence graphs
(PDGs) to capture dependencies in programs, and has an
expressive query language that enables exploration and spec-
ification of information security.

PIDGIN supports the Java programming language, but the
techniques are applicable to other languages. Indeed, we
have generated PDGs for C/C++ programs by analyzing
LLVM bitcode [28] produced by the clang compiler [I1], and
explored information security in these programs using the
same query language and query evaluation engine.

We have used PIDGIN both to explore the information se-
curity of legacy applications and to specify and enforce infor-
mation security during development. For each application,
we were able to express (and verify enforcement of) inter-
esting application-specific security policies, some of which
would have been difficult or impossible to express using ex-
isting tools and techniques.

We believe that this approach has the potential to make
strong information security guarantees accessible to non-
security specialists.

Acknowledgments

We thank Andrew Myers for providing access to a Java ver-
sion of CMS. This research is supported in part by the Na-
tional Science Foundation under Grant No. 1054172.

References

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
le Traon, Damien Octeau, and Patrick McDaniel. Flow-
Droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. In Pro-
ceedings of the ACM Conference on Program Language
Design and Implementation, 2014.

[2] Thomas H. Austin and Cormac Flanagan. Efficient
purely-dynamic information flow analysis. In Proc.
ACM SIGPLAN Fourth Workshop on Programming
Languages and Analysis for Security, 2009.

Thomas H. Austin and Cormac Flanagan. Multiple
facets for dynamic information flow. In Proc. 39th An-
nual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, 2012.

Anindya Banerjee, David A. Naumann, and Stan
Rosenberg. Expressive declassification policies and
modular static enforcement. In Proc. 2008 IEEE Sym-
posium on Security and Privacy, 2008.

11

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

Jean-Francois Bergeretti and Bernard A. Carré.
Information-flow and data-flow analysis of while-
programs. ACM Transactions on Programming Lan-
guages and Systems, 1985.

Chavdar Botev, Hubert Chao, Theodore Chao, Yim
Cheng, Raymond Doyle, Sergey Grankin, Jon Guar-
ino, Saikat Guha, Pei-Chen Lee, Dan Perry, Christopher
Re, Ilya Rifkin, Tingyan Yuan, Dora Abdullah, Kathy
Carpenter, David Gries, Dexter Kozen, Andrew Myers,
David Schwartz, and Jayavel Shanmugasundaram. Sup-
porting workflow in a course management system. In
Proc. 36th SIGCSE technical symposium on Computer
science education, 2005.

Robert Cartwright and Mattias Felleisen. The seman-
tics of program dependence. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, 1989.

Deepak Chandra and Michael Franz. Fine-grained in-
formation flow analysis and enforcement in a java vir-
tual machine. In Proc. 23rd Annual Computer Security
Applications Conference, 2007.

Erika Chin and David Wagner. Efficient character-level
taint tracking for Java. In Proc. 2009 ACM workshop
on Secure web services, 2009.

Stephen Chong and Andrew C. Myers. Security policies
for downgrading. In Proc. 11th ACM conference on
Computer and communications security, 2004.

clang. clang: a C language family frontend for LLVM.
http://clang.llvm.org/|

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently comput-
ing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming
Languages and Systems, 13:451-490, 1991.

Dorothy E. Denning. A lattice model of secure informa-
tion flow. Communications of the ACM, 19(5):236-243,
1976.

William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: an information-flow tracking
system for realtime privacy monitoring on smartphones.
In Proc. Useniz Conference on Operating Systems De-
sign and Implementation, 2010.

J Ferrante, K.J. Ottenstein, and J.D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Languages
and Systems, 9(3):319-349, 1987.

Dennis Giffhorn and Gregor Snelting. Probabilistic
noninterference based on program dependence graphs.
Technical Report 6, Karlsruhe Institute of Technology,
2012.

Joseph A. Goguen and Jose Meseguer. Security poli-
cies and security models. In Proc. IEEE Symposium on
Security and Privacy, 1982.

Christian Hammer and Gregor Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow
control based on program dependence graphs. Interna-
tional Journal of Information Security, 8(6):399-422,
2009.

Christian Hammer, Jens Krinke, and Frank Nodes. In-
transitive noninterference in dependence graphs. In 2nd
International Symposium on Leveraging Application of
Formal Methods, Verification and Validation, 2006.

http://clang. llvm.org/

[20]

[21]

[23]

[24]

[25]

[32]

[33]

[34]

Christian Hammer, Jens Krinke, and Gregor Snelting.
Information flow control for Java based on path con-
ditions in dependence graphs. In IEEE International
Symposium on Secure Software Engineering, 2006.

Boniface Hicks, Dave King, Patrick McDaniel, and
Michael Hicks. Trusted declassification: high-level pol-
icy for a security-typed language. In Proc. ACM
SIGPLAN Workshop on Programming Languages and
Analysis for Security, 2006.

Florian Holzschuher and René Peinl. Performance of
graph query languages: Comparison of Cypher, Gremlin
and native access in Neodj. In Proc. Joint EDBT/ICDT
2013 Workshops, 2013.

Susan Horwitz, Thomas Reps, and David Binkley. In-
terprocedural slicing using dependence graphs. SIG-
PLAN Not., 23(7):35-46, 1988.

Catalin Hritcu, Michael Greenberg, Ben Karel, Ben-
jamin C. Pierce, and Greg Morrisett. All your IFCEx-
ception are belong to us. In Procedings of the 2013
IEEE Symposium on Security and Privacy, 2013.

George Kastrinis and Yannis Smaragdakis. Hybrid
context-sensitivity for points-to analysis. In Proc. 34th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2013.

Dave King, Boniface Hicks, Michael Hicks, and Trent
Jaeger. Implicit flows: Can’t live with ’em, can’t live
without ’em. In Proc. International Conference on In-
formation Systems Security, 2008.

Eddie Kohler. Hot crap! In Proceedings of the Confer-
ence on Organizing Workshops, Conferences, and Sym-
posia for Computer Systems, 2008.

Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proc. 2004 International Symposium on Code
Generation and Optimization, 2004.

Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen,
and David A. Schmidt. Automata-based confidential-
ity monitoring. Proc. 11th Annual Asian Computing
Science Conference, pages 75-89, 2006.

Du Li. Dynamic tainting for deployed Java programs.
In Proc. ACM international conference companion on
Object oriented programming systems languages and ap-
plications, 2010.

Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas
Waye, and Andrew C. Myers. Fabric: a platform for
secure distributed computation and storage. In Proc.
ACM SIGOPS Symposium on Operating systems prin-
ciples, 2009.

Yin Liu and Ana Milanova. Static analysis for infer-
ence of explicit information flow. In Proc. 8th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, 2008.

Yin Liu and Ana Milanova. Practical static analysis
for inference of security-related program properties. In
Proc. IEEE 17th International Conference on Program
Comprehension, 2009.

Benjamin Livshits. Securibench Micro, 2006.
http://suif.stanford.edu/"1livshits/work/
securibench-micro/.

12

(35]

(36]

37]

(38]

(39]

(40]

(41]

42]

(43]

[44]

(45]

(46]

(47]

(48]

(49]

[50]

Benjamin Livshits, Aditya V. Nori, Sriram K. Raja-
mani, and Anindya Banerjee. Merlin: Specification
inference for explicit information flow problems. In
Proc. ACM SIGPLAN 2009 Conference on Program-
ming Language Design and Implementation, 2009.

Heiko Mantel and David Sands. Controlled Declassifi-
cation based on Intransitive Noninterference. In Proc.
2nd ASIAN Symposium on Programming Languages
and Systems, 2004.

Isabella Mastroeni and Anindya Banerjee. Modelling
declassification policies using abstract domain com-
pleteness. Mathematical Structures in Computer Sci-
ence, 2011.

Andrew C. Myers. Mostly-static decentralized informa-
tion flow control. Technical Report MIT/LCS/TR-783,
MIT, 1999.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic,
Stephen Chong, and Nathaniel Nystrom. Jif: Java in-
formation flow. Software release. Located at http:
//www.cs.cornell.edu/jif, 2001-2012.

Aleksandar Nanevski, Anindya Banerjee, and Deepak
Garg. Dependent type theory for verification of infor-
mation flow and access control policies. ACM Transac-
tions on Programming Languages and Systems, 35(2),
2013.

Francois Pottier and Sylvain Conchon. Information flow
inference for free. In Proc. 5th ACM SIGPLAN Inter-
national Conference on Functional Programming, 2000.

Thomas Reps and Genevieve Rosay. Precise interpro-
cedural chopping. In Proc. 8rd ACM SIGSOFT sympo-
sium on Foundations of software engineering, 1995.

B.P.S. Rocha, S. Bandhakavi, J. den Hartog, W.H.
Winsborough, and S. Etalle. Towards static flow-based
declassification for legacy and untrusted programs. In
Proc. 2010 IEEE Symposium on Security and Privacy,
2010.

Andrei Sabelfeld and Andrew C. Myers. Language-
based information-flow security. IEEE Journal on Se-
lected Areas in Communications, 21(1):5-19, 2003.

Andrei Sabelfeld and David Sands. Dimensions and
principles of declassification. In Proc. 18th IEEE Com-
puter Security Foundations Workshop, 2005.

Vincent Simonet. The Flow Caml System: documenta-
tion and user’s manual. Technical Report 0282, Institut
National de Recherche en Informatique et en Automa-
tique (INRIA), 2003.

Scott F. Smith and Mark Thober. Improving usabil-
ity of information flow security in Java. In Proc. 2007
Workshop on Programming Languages and Analysis for
Security, 2007.

Deian Stefan, Alejandro Russo, John C. Mitchell, and
David Maziéres. Flexible dynamic information flow

control in Haskell. In Proc. 4th ACM Symposium on
Haskell, 2011.

Mana Taghdiri, Gregor Snelting, and Carsten Sinz. In-
formation flow analysis via path condition refinement.
In International Workshop on Formal Aspects of Secu-
rity and Trust, 2010.

Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu
Sridharan, and Omri Weisman. TAJ: Effective taint
analysis of web applications. In Proc. ACM SIGPLAN
2009 Conference on Programming Language Design and
Implementation, 2009.

http://suif.stanford.edu/~livshits/work/securibench-micro/
http://suif.stanford.edu/~livshits/work/securibench-micro/
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif

[51] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia
Cousot, and Salvatore Guarnieri. ANDROMEDA: ac-
curate and scalable security analysis of web applica-
tions. In Fundamental Approaches to Software Engi-
neering, pages 210-225, 2013.

[52] Jeffrey A. Vaughan and Stephen Chong. Inference of
expressive declassification policies. In Proc. 2011 IEEE
Symposium on Security and Privacy, 2011.

[63] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine.
A sound type system for secure flow analysis. Journal
of Computer Security, 4(3):167-187, 1996.

[54] Daniel Wasserrab, Denis Lohner, and Gregor Snelting.
On PDG-based noninterference and its modular proof.
In Proc. ACM SIGPLAN Fourth Workshop on Pro-
gramming Languages and Analysis for Security, 2009.

[55] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi
Kohno, and David Wetherall. TaintEraser: Protecting
sensitive data leaks using application-level taint track-
ing. ACM Operating Systems Review, 2011.

APPENDIX

A. MICRO-BENCHMARK RESULTS
Test Group Detected False

Positives

Aliasing 12/12 0
Arrays 9/9 5
Basic 63/63 0
Collections 14/14 5
Data Structures 5/5 0
Factories 3/3 0
Inter 16/16 0
Pred 5/5 2
Reflection 1/4 0
Sanitizers 3/4 0
Session 3/3 1
Strong Update 1/1 2
Sum 159/163 15

Figure 6: SecuriBench Micro results

To compare with other Java analysis tools, we ran PIDGIN
on the SecuriBench Micro [34] 1.08 suite of 123 small test
cases. All the tests are smaller than the guessing game of
Section [B] and take about the same amount of time to gen-
erate the graphs and execute the queries.

We develop PIDGIN queries for each test. We detect 159
out of a total of 163 vulnerabilities. We do not detect vul-
nerabilities due to reflection. We also miss an incorrectly
written sanitization function, though our policy marks it as
a trusted declassifier, and thus indicates it should be in-
spected or otherwise verified.

For many of the tests the policy is a simple noninterfer-
ence policy stating that sensitive values from an HTTP re-
quest should not affect public output. For a few tests there
is an allowed implicit flow, and we developed the policies to
account for them. Some tests require domain specific poli-
cies (e.g., the Sanitizers tests required application-specific
declassification policies).

The false positives were caused by known limitations of
PIDGIN. Most were caused by failing to track flow through
individual array elements. Two Pred tests rely on arithmetic
reasoning to identify dead code. The two Strong Update false
positives are due to our flow-insensitive tracking of heap
locations.

13

B. USING PIDGIN FOR LEGACY CODE

The interactivity of PIDGIN was essential to understand-
ing the security guarantees provided by legacy case-study
programs and writing queries that describe these guaran-
tees. As we did not write these programs, we first famil-
iarized ourselves with the source code, and then attempted
to develop queries that described security guarantees that
the programs offered. We were occasionally surprised when
a relatively simple policy failed. We would then inspect the
paths that remained (often with the shortestPath operation),
which helped us to understand the information flows in the
program and refine the query until we had a policy that the
program satisfied.

In this section, we illustrate the interactive query and pol-
icy generation process by describing in more detail how we
developed Policy and Policy for the Universal Pass-
word Manager (UPM).

Generate a program dependence graph. Before query-

ing, we first generated a program dependence graph for UPM.

As discussed in Section [f] this took about 2.5 minutes for
the pointer analysis and 6 minutes to construct the PDG.
We do this relatively expensive analysis once, serialize the
PDG to disk, and use the same PDG for many queries.

Find sources and sinks. UPM protects a user’s pass-
words by encrypting them with a single master password.
The application prompts the user for the master password,
and then uses this to decrypt the database containing the
user’s passwords. If the master password is incorrect, the
decryption will fail.

We decided to investigate confidentiality guarantees re-
garding the master password that is entered by the user.
Inspecting the application code, we found that the master
password is returned from the askUserForPassword method.
The return values of this method are sources.

let srcs = pgm.returnsOf(‘‘askUserForPassword’’) in ...

Note that we chose to regard the return values of this
method as sensitive sources. In doing so, we are trusting
the implementation of askUserForPassword to correctly han-
dle data received from the input: a Java Swing widget. We
could use PIDGIN to learn more about how the password is
handled by this method, but askUserForPassword is 11 lines
of code and uses standard Java Swing API calls to create a
dialog box with a password field, so we inspected it by hand.
We also trust the Swing library. This is a common way to
use PIDGIN: to reduce trust in an entire application to trust
in well-designed and well-maintained libraries, and a small
amount of application code.

We identified three different places that data may leave
the application: 1) the GUI (via the Swing API); 2) the
console (via java.io.PrintStream); and 3) the network (via
a custom java.net.HTTPTransport class). Formal arguments
to methods in these three locations are sinks.

let sinks = pgm.formalsOf(‘‘javax.swingx'")
U pgm.formalsOf(*'PrintStream.printx’")
U pgm.formalsOf(““HTTPTransport+"") in ...

Try simple queries. We first checked if there are any
paths between the sources and sinks.

pgm.between(sources, sinks)

14

This results in a subgraph of almost 1,000,000 nodes, more
than half the original PDG. The large size of this graph is
due to paths through JDK library code, and inherent im-
precision in the PDG analysis. (When graphs are too large,
the PIDGINQL user interface automatically presents a tex-
tual summary of the graph, rather than a more data-rich
presentation.)

We narrowed our focus to just data dependencies, and
tried another simple query.

pgm.noExplicitFlows(srcs, sinks)

This query evaluated to the empty graph: there are no ex-
plicit information flows from the password to public outputs.

Investigate counterexamples. The above policy gives us
a security guarantee regarding how the application handles
the master password, but we wanted to find a stronger policy
explaining how the control dependencies allow information
about the master password to leak from the application. To
begin this process, we found a counterexample by using the
shortestPath operation.

pgm.shortestPath(sources, sinks)

The resulting path (ending in the Java Swing library) con-
sists of 8 edges and contains a CD edge from the node for
the Java expression password == null. This means that on
this path, output to the GUI may reveal whether the master
password is null (perhaps due to the user not entering any
text). Based on our understanding of the application, this is
correct functionality so this expression is a valid declassifier.

After removing flows described above, the shortest re-
maining counterexample is caused by a NullPointerException
that is implicitly thrown when the master password is null
at runtime (i.e., when accessing a method of the charac-
ter array, password, if password is null then the exception is
thrown). We define a function to find implicit null pointer
exceptions in the prelude. We include it here for complete-
ness (lines [O[I3] of Figure [7)). Similar to the above, this does
not reveal useful information about the user’s master pass-
word, so this is another declassifier.

All remaining implicit flows are through the control flow
of the decryption function, which uses the master password
to decrypt the database containing a user’s passwords. In
this function, control flow branches depending on whether
the password was correct, either throwing an exception or
successfully decrypting the database. All that is revealed
about the master password is whether the decryption was
successful. Therefore, we find the program counter node cor-
responding to the entry point of the decryption function
(line [17| of Figure [7) and add this to our declassifiers.

Create a PidginQL policy. The final policy is shown
in Figure []] This policy was developed incrementally and
interactively. Whereas the informal description of Policy
is vague, the PIDGINQL policy is a strong, precise, checkable
policy that clarifies which information flows from the master
password to public output are appropriate.

C. USING PIDGIN FOR NEW DEVELOP-
MENT

Often new development begins with an incomplete and
imprecise security specification that evolves as development
progresses. PIDGIN policies are flexible and, because they are
not embedded in the program text, can be easily modified

1 let srcs = pgm.returnsOf(‘‘askUserForPassword’’) in
2 let sinks = pgm.formalsOf(‘‘javax.swingx'")
3 U pgm.formalsOf(*‘PrintStream.printx"")
4 U pgm.formalsOf(*"HTTPTransport+"") in
5
6 let nullCheck =
7 pgm.forExpression(*'password == null’’) in
8
9 let findImplicitNull(G, possibleNullExpr) =
10 let copies = pgm.selectEdges(COPY)
11 .forwardSlice(possibleNullExpr) in
12 pgm.forwardSlice(copies, 1)
13 .selectNodes(*“IMPLICIT_NULL_CHECK") in
14

15 let implicitNullChecks = pgm.findImplicitNull(srcs) in

17 let decryptEntry = pdg.entries("decrypt”) in

18

19 let declassifiers = nullCheck U

20 implicitNullChecks U
21 decryptEntry in

22 pgm.declassifies(declassifiers, srcs, sinks)

Figure 7: PIDGINQL policy expressing Policy

along with the informal security specification and the code
itself. PIDGIN policies can be used for regression testing to
ensure that changes to the code do not cause policy viola-
tions.

We illustrate this process by describing the use of PIDGIN
throughout the development of a conference management
system, PChair. In the end there were fourteen separate
PIDGIN security policies for PChair. These policies either re-
strict access to sensitive data (author names, paper content,
reviews, etc.) or ensure proper permissions for sensitive oper-
ations (e.g. accepting a paper or moving a deadline), along
with a single trusted declassification policy (PC members
can learn if they have a conflict even if they cannot see the
conflicting paper). This exposition focuses on Policy dis-
cussed in Section [6] which specifies when information about
paper reviews may be revealed.

Define an informal policy. Before beginning develop-
ment we wrote down the policies we desired informally. Pol-
icy [G2 was initially: Only authors of a paper, reviewers of a
paper, and PC members can see a paper’s reviews.
Implement initial version of the application and Pidgin
policy. We implemented PChair using role-based access
control, as this closely mirrored our informal specification.
We used simple functions to check whether the current user
has a particular role, and then referred to these functions
in our policies. Thus, our policies rely on the correctness
of these functions, which were deliberately designed to be
simple and easy to understand.

The initial version of Policy directly implements the
informal specification:

... // output = errors or responses sent to the client
let isAuthorOf = pgm.returnsOf(‘‘isAuthorOf’") in
let isPC = pgm.returnsOf(*'isPCMember’") in

let isReviewer = pgm.returnsOf("‘isReviewer”) in

let getReview = pgm.returnsOf(‘‘getReview’’) in

let check = pgm.[isAuthor || isPC || isReviewer] in
pgm.flowAccessControlled(check, getReview, output)

We first gather the possible outputs, messages sent to the
client. Then find the return values for the access checks and
ensure that at least one of them is true on all flows from

15

getReview to the client. The only way to access a review
is by calling getReview (a simple PIDGIN sub-policy ensures
that this is the case).

Update policies when the specification is modified.
We iteratively added new features to PChair during develop-
ment. As the functionality of the application evolved, the se-
curity policies also evolved. For example, we added a system
administrator role. System administrators have superuser-
like abilities, which required changes to many of our informal
specifications and PIDGIN policies: the informal specification
for Policy [G2 became: Only authors of a paper, reviewers of
a paper, PC members, and systems administrators can see a
paper’s reviews. The access control check in the PIDGINQL
policy added isAdmin as an acceptable condition.

Because PIDGIN policies are not spread out throughout
the code base (as, e.g., security-type annotations) updating
the policies was straightforward, and accomplished easily.

Regression testing security policies. We used PIDGIN
to check enforcement of security policies whenever new code
was committed to our source repository. The commit would
fail unless all security policy checks succeeded. Thus, as func-
tionality evolved, the PIDGINQL policies were required to
evolve with them.

This automated regression testing of security policies was
useful several times. In one case, due to incorrect refactor-
ing of a security-relevant piece of functionality (a missing
negation), a security policy failed. Timely notification of the
security policy failure allowed us to easily identify and fix
the security violation. In another case, changing the name
of a method in the code but not the security policy caused
a security policy to fail with an evaluation error (when a
returnsOf operation evaluated to an empty graph), requiring
us to ensure that the security policy was up to date with
respect to the code.

The final PIDGINQL policy for Policy is shown be-
low, and accounts for additional functionality added to the
application, including notification deadlines and recording
reviewer/paper conflicts.

... // output = errors or responses sent to the client
let isAuthorOf = pgm.returnsOf(‘‘isAuthorOf"") in
let isPC = pgm.returnsOf("'isPCMember"") in
let isReviewerOf = pgm.returnsOf(‘‘isReviewerOf'’) in
let isAdmin = pgm.returnsOf(*‘isAdmin"’) in
let notifyDeadlinePast =
pgm.returnsOf(‘‘notifyDeadlinePassed’’) in
let reviewDeadlinePast =
pgm.returnsOf(‘‘reviewDeadlinePassed’) in
let hasConflict = pgm.returnsOf(*‘hasConflict’’) in
let getReview = pgm.entriesOf(‘‘getReview'") in
let check = pgm.[isAdmin ||
(isAuthorOf && notifyDeadlinePast) ||
(isPC && reviewDeadlinePast && 'hasConflict ||
isReviewerOf)] in
pgm.flowAccessControlled(check, getReview, output)

	Introduction
	PIDGIN by example
	PDGs and security guarantees
	Structure of PIDGIN PDGs
	Security guarantees from PDGs

	Querying PDGs with PidginQL
	Implementation
	PDGs for Java programs
	PidginQL Query Engine

	Case studies
	Analysis performance
	Course Management System (CMS)
	Free Chat-Server
	Universal Password Manager (UPM)
	Guessing Game
	PTax
	PChair

	Related work
	Conclusion
	Micro-benchmark Results
	Using PIDGIN for legacy code
	Using PIDGIN for new development

