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Abstract

Many environments in which people and computer agentsaaténvolve de-
ploying resources to accomplish tasks and satisfy goalss Jdper investigates
the way that the contextual setting in which decisions arderadfects the behav-
ior of people and the performance of computer agents thatdot with people
in such environments. It presents experiments that medswegotiation behav-
ior in two types of contextual settings. One provided a tashtext that made
explicit the relationship between goals, tasks and ressurthe other provided
a completely abstract context in which the payoffs for altidien choices were
listed. Results show that people are more helpful, lesshekind less competitive
when making decisions in task contexts than when making therompletely ab-
stract contexts. Further, their overall performance wateb@ task contexts. A
predictive computational model that was trained on datainbt in task contexts
outperformed a model that was trained under abstract cent@hese results in-
dicate that modeling the way people make decisions in coigessential for the
design of computer agents that will interact with people.

1 Introduction

Technology has opened up vast opportunities for computamtado interact with peo-
ple in such increasingly diverse applications as onlindians, elderly care systems,
disaster relief operations, and system administratorggdaset al. (2001); Pollack
(2006). While these applications differ broadly in sizeggse, and complexity, they are
similar in that they involve people and computers workinggtiher intask settingsin
which the participants fulfiljoalsby carrying outasksrequiring the use afesources
Participants may have to cooperate, negotiate, and peidtrar group actions in
order to achieve the goals, requiring their reasoning atheupotential and likely be-
haviors of other participants. For computer agents to &mtesuccessfully with people



in these mixed human-computer task settings, they need tpobé partners, meet-
ing people’s expectations of others. In designing compagents for such settings,
it is thus important to understand the decision-makingeatyias people deploy when
they interact with others and to evaluate various computatistrategies for interact-
ing with people. Formally modeling the behavior of peopled an particular their
decision-making behaviors, raises significant artifiailligence challenges.

In this paper, we show that for best performance, computat&pating in mixed
human-computer task settings must model human behavioniayathat reflects the
contextual settinghat embeds the decisions people face. We demonstrateiffieat d
ent contextual settings influence significantly human dewcisnaking, by presenting
to people identical multi-agent decision-making probléramed in different types of
contextual settings, and by providing detailed measurésnafrthe outcomes. In ad-
dition, we trained computational models on data obtaindtése different contextual
settings, and evaluated the performance of these models.

Our experiments deploy a conceptually simple but expregsime called Colored
Trails (CT) Groszt al. (2004) to provide d@ask contexfor decision-making. CT ex-
plicitly manifests goals, tasks, and resources in a wayishatmpelling to people, yet
abstracts away from a complicated underlying domain. hehgenables investigators
to focus on people’s decision-making strategies, rathem #pecifying and reasoning
about individual domain complexities. We used a version dft@at included a one-
shot take-it-or-leave-it negotiation round between twerdg that needed to exchange
resources to achieve their goals.

Experiments in behavioral economics typically use evenenfighly abstracted
contextual settings, such as decision trees or normal fabtes, that fully specify
payoffs for players from potential strategies and compjediale any underlying rela-
tionship between tasks, goals, and resources. The desisiggendered by CT games
can be described as a table of payoffs as well. We call thisaisepresentation
thetable context Game-theoretic tools can be applied in table contextsduige an
idealized notion of appropriate decision-making behavior

We show that people presented with identical decision-ngagroblems in these
two contextual settings perform strikingly differentiypth qualitatively and quantita-
tively. We analyzed people’s behavior in terms of variousialocriteria, for which
we give a precise definition in terms of the CT game. Resultsvghat when mak-
ing decisions in the task context, people are more helpfulless competitive — less
game-theoretic — than when making decisions in the tabléezbnSurprisingly, the
results also indicate that the task context improves pé&oplerall performance.

To evaluate the effects of these differences on computertagee trained predic-
tive models on data obtained in both types of contextualhggstt The models explic-
itly represented social factors that have been shown tetgffeople’s behavior Gadt
al. (2004). The model trained on data obtained in the task cooigperformed the
model trained on data obtained in the table context. Thegergrents show that for
optimal performance, agents need to model how people make¢tated decisionss
presented to them in contexturthermore, overall performance may be better if that
context is task-oriented, rather than payoff-orienten for the same tasks

For designers of intelligent agents, the important lessoth@se experiments is
that the design of computer agents that will operate in mingdan-computer settings



must consider how the decisions presented to people wilbhtegtualized and reflect
the human decision-making process in that contextuahggttiot merely in a purely
idealized (even if theoretically equivalent) manner. Asxcimas we might like it, there
is no way for Al systems to escape into pure game theory irdimglagents that will

participate in mixed systems.

2 Empirical Methodology

This section describes the two contextual settings, taskegband table context, we
investigated and the experiments we conducted in thosegett

In the task context, a 2-player CT game was played on a 4x4 board of ablore
squares with a set of chips. One square on the board was désiigas the goal square.
Each player’s icon was initially located in a random, nomgmosition. To move to an
adjacent square required surrendering a chip in the coltratfsquare. Players were
issued four colored chips. They had full view of the board each others’ chips, and
thus they had complete knowledge of the game situation.

Players were designated one of two roleposermlayers could offer some subset
of their chips to be exchanged with some subset of the chipesgonder players;
respondeplayers could in turn accept or reject proposers’ offeraolbffer was made,
or if the offer was declined, then both players were left withir initial allocation of
chips. Chip exchanges were enforced by the game contrafter the negotiation
ended, both players were automatically moved as close aihpoo the goal square.

The scoring function for players depended solely on thein performance: 100
points for reaching the goal; 10 points for each tile left mmayer's possession; 15
points deducted for any square in the shortest path betwagar(s final position and
the goal-square. These parameters were chosen so thagjdetthe goal was by far the
most important component, but if an player could not get éogbal it was preferable
to get as close to the goal as possible. The score that eagdr péeived if no offer
was made was identical to the score each player received ibffer was rejected by
the deliberator. We refer to this score as tleenegotiation alternativand to the score
that each player received if the offer was accepted by thbetaltor as theproposed
outcomescore.

Snapshots of the CT GUI of one of the games used in the expetisishown in
Figure 1. The Main Window panel, shown in Figure 1(a), inelsidhe board game,
the goal square, represented by an icon displaying the I8itand two icons, “me”
and “sun”, representing the location of the two players anlibard at the onset of
the gamé. The bottom part of the Main Window panel, titled “chips”, simthe chip
distributions for the players. In the game shown here, blathaus lack sufficient chips
to get to the goal square. A proposer uses the Propose Exelpamgl, shown in
Figure 1(b), to make an offer to a responder.

Thetable context consisted of a completely abstract representafianCT game
as a list of potential offers that could be selected by thepser player. Each offer was
represented as a pair of payoffs for the proposer and themdsp. Figure 2 shows a

1CT colors have been converted to grey scale in this figure.
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Figure 1: Snapshots of Interaction in a Task Context
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Figure 2: Snapshot of an Interaction in a Table Context

snapshot of a game in this representation as seen from thegdaiiew of a proposer
player. Each cell in the table represents an offer, and tiedea cell corresponds to
choosing the offer associated with its payoffs. One of thés cepresents the no-
negotiation alternative, which is presented as the detauttome of the interaction.

A total of 32 subjects participated in the experiment, elyudiVided between the
two conditions. They interacted with each other for 96 rauné@articipants in the
task condition interacted with each other using the CT emvitent, whereas those in
the table condition interacted with each other using theoffayatrix representation.
Participants only interacted with others in their conditigwoup;they were not provided
any information about each other. In both conditions, pgréints were compensated
in a manner that depended solely on their individual scaggregated over all rounds
of interaction.

For each CT round that was played in the task condition, aivalgmt round was



played in the table condition, in the sense that the payaffgtdhe intersection of each
row and column represented the score in the CT round for tiregmonding offer and
response. For example, the payoff matrix shown in Figure&jisivalent to the CT
game shown in Figure 1.

3 Resultsand Analysis

We use the terntable proposersandtask proposerdo refer to the participants that
were designated with the proposer role in the table or taskiiion respectively and
similarly for the responder role. We use the tesffer benefito refer to the difference
between the proposed outcome for an offer and the no-néigoteternative score of
the round. We measured proposers’ behavior in terms of tieteres: The degree
to which proposers wereelfishor helpfulwas defined in terms of the average offer
benefit they proposed for themselves or for respondersecésply; the degree to
which proposers wereompetitivewas defined in terms of the difference between the
average offer benefit they proposed for themselves and fee lménefit provided to
responders. Although we have given a psychological inggtion to these features,
we do not imply that they are independent. For example, gesocan exhibit both a
degree of selfishness and a degree of helpfulness based avettagie benefit of their
offers.

3.1 The Effect of Contexts on Human Behavior

Table 1 presents the average offer benefit to participant®ih task and table con-
dition for each role designation. Table proposers offergdiicantly more benefit to

Table 1: Average Benefit of Offer

Offer Benefit to Num.
Proposer| Responden acceptances
Task 82.3 47.6 62 (77%)
Table 98 36 69 (77%)

themselves than did task proposers (t-test 0.05). Also, table proposers offered
significantly less benefit to table responders than taskqzens offered to task respon-
ders (t-tesp < 0.01). Thus, the task context had the effect of making proposerem
helpful and less selfish when interacting with responders.

The difference between the average offer benefit to propasat to responders is
positive in both conditions (t-tegt < 0.05). Although in both conditions proposers
are competitive. the offer difference was larger in thegatzndition than in the task
condition (t-tesip < 0.05). Thus, on average table proposers were more competitive
than task proposers. We hypothesized that table proposaile competitive offers
more often than did task proposers. To test this hypothesigperformed a within-
round comparison of the offer benefit in both conditions.l@&bpresents the number
of rounds in which the difference between the proposed hfoefproposers and re-
sponders was positive (column “ProposeResponder”) and the number of rounds in



Table 2: Frequency of Competitive Offers
Proposer- Respondell Proposex: Responder
Task 26 (27%) 51 (60%)

Table 60 (62%) 24 (28%)

which this difference was negative (column “ProposeResponder” ). As shown by
the table, table proposers made offers that benefited thesssaver responders sig-
nificantly more often than task proposers (chi-squate0.05). These results confirm
that table proposers are more likely to be competitive thapgsers.

Table 2 also shows that 62% of all offers made by table prapdsmnefitedhem-
selvesmore than table responders, while 60% of all offers made bl paoposers
benefited taskesponderanore than themselves (chi-square< 0.05). This strik-
ing result indicates that task proposers were helpful méiemdhan they were selfish,
whereas table proposers were selfish more often than theyhveduful.

Having established that the context in which decisions aaderaffected the be-
havior of proposers, we investigated whether it affectedlibhavior of responders.
It is more difficult to perform within-round comparisons @sponder behavior across
task and table conditions, because the decision of wheatherdept or reject an offer
depends on the exchange offered by proposers. For the samd this exchange may
be different for task and table conditions. As shown in Tdblthere was no difference
in the ratio of exchanges accepted by responders (77%) beteanditions. However,
this result does not mean that responders were not affegtedriext; as also shown
in Table 1, they were responding to exchanges that were medpéuhto them in the
task condition. We expected this pattern to hold for acakpfters as well; thus, we
expected that the offers that wexeceptedyy responders were more helpful to them in
the task condition than in the table condition.

Table 3: Average Benefit for Accepted Exchanges
Proposer| Responder| Total
Task 79.5 56.4 135.9
Table| 85.6 40.7 126.3

Table 3 shows the exchange benefit to proposers and resgandgaged over all
accepted proposals, as well as the total accumulated bénefiich condition. The
benefit to responders from accepted proposals was sigrilficagher in the task con-
dition than in the table condition, and conversely for thepgmsers (t-tesh < 0.05).
These results indicated that task responders outperfotatdel responders, whereas
table proposers outperformed task proposers. Interdgtiag the rightmost column
shows, the total performance (combined proposers and médsp®scores) was higher
in the task condition than in the table condition. The berfefiaccepted exchanges is
a measurement of performance, because the outcome of aawhabinteraction was
fully determined by the action of the responder (t-fest 0.1). Although this result
was not significant at the < 0.05 confidence interval, the trend it indicates suggests
that task context has a positive effect on the combined padnce of participants.



To address the question of whether the difference in behawio be explained by
the lack of an explicit representation of payoff in the taskdition, we ran an exper-
iment that used the CT game, but allowed subjects to view #yeffs for potential
offers for all players. This intermediate representatiogsprves the task context as
well as displaying the payoff function for both players. Résusing the same set of
games as in the original experiment show that there was ndisant difference in the
average benefit allocated to proposers and respondersimteimediate representa-
tion than in the task condition.

In addition, we ruled out the effect of cognitive demands vbjacts by including
decision support tools for both modes of decision repregiamt. In the CT game,
subjects could query the system for suggestions about gtehths to take given any
hypothetical chip distribution. When presented with aeadfl payoffs, subjects could
sort the table by their own, or the other’s benefit. In this wabjects were allowed
to focus on interacting with each other rather than the dagntcomplexity of the
decision-making.

3.2 Comparison with Game Theoretic Strategies

We now turn to a comparison between the offers that were nmeeadh condition and
the offers dictated by the exchange corresponding to thia Biggilibrium strategy. We
use the ternNE exchangef a round to refer to the exchange prescribed by the Nash
equilibrium strategy profile for the round. This exchangkexsf the maximum benefit
for the proposer, out of the set of all of the exchanges tHat abn-negative benefits
to the responder. In our scenarios, the NE exchange genaralbunted to selfish,
unhelpful, competitive offers.

We expected table proposers to be more likely to offer NE arglks than task pro-
posers. Table 4 shows the number of NE offers made by proposboth conditions.
The proportion of NE offers was significantly higher in thbleacondition (59%) than
in the task condition (15%) (chi-square< 0.01).

Table 4: Frequency of Nash Equilibrium Offers
Num.. offers
Task 13 (15%)
Table | 57 (59%)

To compare the extent to which the exchanges made by prapiostre two con-
textual settings differed from the NE exchange, we plotterlaverage benefit offered
by NE exchanges and by proposed exchanges for both task laledctanditions, as
shown in Figure 3.

The difference between the average benefit to respondarstfre NE offer and
the average proposed exchange was close to zero in the tatz&ion, and large and
positive in the task condition (t-tegt < 0.05). Similarly, the difference between the
benefit to proposers from the NE offer and the average prapesehange was was
close to zero in the table condition, and large and negatitiea task condition (t-test
p < 0.05). The Euclidean distance between the two points reprewgtite NE benefit
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Figure 3: Benefit from Proposed Exchanges vs. NE Exchanges

to proposers and responders was significantly larger ina$le ¢ondition than in the
table condition. In fact, there was no statistically sigrdfit difference between offers
in the table condition and NE offers. These results areistylit significant, showing
that participants who make decisions in the table condiiemore likely to follow
the game-theoretic paradigm.

There is a discrepancy between these findings and thoselodétawioral economic
studies, which show that people dot generally adhere to game theoretic equilibria,
and display variance within their play. Several differenbetween the structure of
the negotiation scenario used in our experiments and thegamditionally used in
behavioral economics may explain this difference. Fingt,scenario presented partic-
ipants with some guaranteed reward (the no-negotiatienredtive) if agreement was
not reached at the end of the interaction. Traditional bealveconomic games do
not provide such reward. (For example, if no agreement ishrea in the ultimatum
game, both players end up empty handed.) It is possible thi@bie contexts, pro-
posers saw fit to make selfish exchanges, because they caalgsaall back on their
guaranteed outcome if that offer was rejecteBlecond, each interaction in our exper-
iment varied which player needed the other to get to the gmasome rounds, both
players were mutually dependent on each other. In traditioehavioral economic ex-
periments, players’ dependencies are static. It may betbaséable participants were
more likely to follow game theoretic equilibria in one typedependency but not in
others.

4 TheEffect of Contextson Learner Agents

This section presents results that indicate the effectask tontexts on the perfor-
mance of computer systems that learn a model of people’siagigo behavior. Using

the data collected from the task and table contextual cimmdit we trained a compu-
tational model for predicting the actions of human propss#ve adopted the model

2This phenomena, deemed the “endowment effect”, has beamusted in the psychology literature
Kahneman, Knetsch, & Thaler (1991).



proposed by Gal & Pfeffer (2006) for predicting people’sdiiy behavior in multi-
attribute negotiation. In this model, proposals are gdedray converting people’s
utility functions into a stochastic function that assigngrabability to each potential
exchange at each round of interaction. A soft-max functiomsied to make the likeli-
hood of each exchange proportional to the likelihood of offussible exchanges. This
model is well suited for capturing certain aspects of humatmalior: The stochastic-
ity of the soft-max function allows for proposers to devifittam choosing the action
associated with the highest utility, but in a controlled wayaddition, the likelihood
of choosing an exchange that incurs a high social utility inérease if there are few
other similar exchanges that incur high utility, and wiltdease if there are many other
similar exchanges.

For each potential exchange, we defined a “social” utilityction for proposers
that is a weighted sum of their own benefit from the offer, thaddit to the responder,
and the difference in benefit for the proposer and the regroiitiese features capture
the social factors (i.e., selfishness, helpfulness and etitiveness) that we defined
in the Results section. The model parameters, represegtdtklfeature weights of
the utility function, were trained using supervised leagi The labeled training set
consisted of the exchanges made by proposers in the taskabledconditions. Each
instance consisted of pairs of possible excharigesr; ), wherez, was the offer made
by the proposer, ang; is any other possible exchange. To estimate the featurdweeig
of the utility function, we used a gradient-descent techaithat learned to predict the
chosen offer,. given any other offex;;:

1

P(z. chosen| z, orz; chosens,,s;) = 11 culen)—u(@r)
6u Ty )—ulxT

Here,s, denotes the social factors associated with the offer thatpraposed. This
probability represents the likelihood of selectingin the training set, givem;. The
error function to minimize is defined as the extent to whiahtiodel is not a perfect
predictor of this concept,

err; =1 — P(z, chosen| z, or z; chosens,,s;)

Taking the derivative of this function, we obtain the foliogy update rule for the fea-
turesw, whereq is a constant learning rate, add= s, — s;.

w=w-+ a(errj)2 “(I—erry)-d

We learned separate models for the task and table contemtboth cases, we
trained and tested the algorithms separately, using tiehefoss validation. We ob-
tained the following average posterior parameter valuegHe features selfishness,
helpfulness and competitiveness in each condition.

Condition | Learned weightg
Task | (5.20,3.2,0.40)
Table (8.20,1.3,8)

As shown in the table, both task proposers and table propaserselfish, in the sense
that they place high weight on their own benefit. Howeverletgiyoposers assign



higher weight to their own benefit than do task proposersgssting they are more
selfish than task proposers. Task proposers also assigmer ligight to helpfulness
and significantly lower weight to competitiveness thanegoposers. These values
align with the trends reported in the Results and Analysitice.

We evaluated both models on test sets comprised of held ¢aifficem both task
and table conditions. We report the average negative lagjhigod for all models in
the following table as computed using ten-fold cross vaiata A lower value for this
criteria means that the test set was given a higher likethnothe model.

Training / Testing| Average Log
Condition Likelihood
Task / Task 0.144
Table / Task 1.2
Table / Table 0.220
Task / Table 1.2

As shown by the table, the model trained and tested on thectastition was able to
fit the data better than the model trained and tested in tHe tamdition, indicating
that computer agents participating in mixed human-conrgagk settings must model
human performance in a way that reflects domtextual settinghat the humans are
faced with.

In addition, the model trained in the task condition outperfed the model trained
in a table context when both models were evaluated in tastegts (And conversely
for the model trained in the table condition.) The extent taolh both models under-
performed when evaluated in the context they were not tdaimewas similar for both
conditions. These results clearly imply that the context/ich decisions are placed
affects the performance of computer models that learn &vaiet with people.

5 Related Work

Our work extends the studies in behavioral economics thasoe the behavior of
human participants in controlled laboratory experimemtgese studies have explored
the conditions in which people depart from selfish reasomind exhibit a varying
degree of preference for others’ welfare. For example, leebpve been shown to
engage in cooperative behavior in a one-shot prisonersfita game about half the
time, despite the fact that their dominant strategy is tedef

In behavioral economic experiments, decisions are tautly placed in a table
context. There is a direct mapping from participants’ actito their outcomes; all
decisions are reduced to choices between explicit utilites; participants interact
using a “low band-width” representation, summarized inyoffamatrix or tree format.
CT is similar to games used in behavioral economics in tredtstracts away from the
real-world, but it abstracts less, removing only domairc#ffiecontexts, and preserving
the key interaction between tasks, goals and resourcesaf@provide a task context
in which to place many standard concepts from economic gasuek as the ultimatum
game and the prisoner’s dilemma.
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Our work is fundamentally different from research in theiden and management
science literature that addresses on the effects of gralpkecsus tabular representa-
tions on people’s decision-making Vessey (1991); Jarver{p889). This work has
shown that performance on particular tasks is enhanced #ieea is a good match
between the mode used to represent a task and the cogniiverces required to
complete it. It aims to present information in a way that pdeg good “cognitive
fit", a vivid representation that overcomes the constraifitsuman information pro-
cessing. In contrast, we examine whether the structurélifesthat are inherent in
task contexts, such as the relationship between goals aodnees, affect people’s
decision-making. We are not concerned with the cognitivplications of different
context settings or with their mode of representation. &, fae control for the effects
of cognitive load in both task and table context settings foyigling participants with
decision support tools.

Lastly, recent work on modeling the social factors that cffgeople’s decision-
making behavior have concentrated on task contexts onlgd/ztral. (2005); Galet
al. (2004). This work extends these approaches by comparingismad decision-
making in task contexts and table contexts.

6 Conclusion and Future Work

We have shown that when making decisions placed in a taslkexipmteople behave
more helpfully, less selfishly and less competitively thdrewmaking decisions placed
in a table context. Further, people are significantly mdeelyi to behave according to
game theoretic equilibria in table contexts, which has atieg effect on their perfor-
mance, compared to their behavior in task contexts. More@e®ple do not behave
differently in task contexts when they are given accessd@ussible payoffs for them-
selves and others. We induced predictive models of the idaeisaking processes,
showing that when learning in task contexts, computer ptagee better at predicting
people’s behavior than when learning in completely abstraetexts.

The results reported in this study suggest that when bgjldisystem for human-
computer interaction, placing the decisions in task casteill improve the perfor-
mance of both people and computer agents that learn fromgebperefore, designer
of systems that involve people and computers interactiggtter need to decide how
to appropriately contextualize the decisions they preseparticipants.

While our experiments were performed in a relatively singid flat task context,
the fact that differences were found in this context sugthestit is likely there will be
even greater ones in more complex settings. Our resultsdeavguideline for agent
designers, specifically that the right context should bel wggen investigating human
decision-making processes. We have presented an inftagteuor conducting such
an investigation, and a methodology for how it might be done.
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