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Abstract

Many environments in which people and computer agents interact involve de-
ploying resources to accomplish tasks and satisfy goals. This paper investigates
the way that the contextual setting in which decisions are made affects the behav-
ior of people and the performance of computer agents that interact with people
in such environments. It presents experiments that measured negotiation behav-
ior in two types of contextual settings. One provided a task context that made
explicit the relationship between goals, tasks and resources, The other provided
a completely abstract context in which the payoffs for all decision choices were
listed. Results show that people are more helpful, less selfish, and less competitive
when making decisions in task contexts than when making themin completely ab-
stract contexts. Further, their overall performance was better in task contexts. A
predictive computational model that was trained on data obtained in task contexts
outperformed a model that was trained under abstract contexts. These results in-
dicate that modeling the way people make decisions in context is essential for the
design of computer agents that will interact with people.

1 Introduction

Technology has opened up vast opportunities for computer agents to interact with peo-
ple in such increasingly diverse applications as online auctions, elderly care systems,
disaster relief operations, and system administrator groups Daset al. (2001); Pollack
(2006). While these applications differ broadly in size, scope, and complexity, they are
similar in that they involve people and computers working together intask settings, in
which the participants fulfillgoalsby carrying outtasksrequiring the use ofresources.

Participants may have to cooperate, negotiate, and performother group actions in
order to achieve the goals, requiring their reasoning aboutthe potential and likely be-
haviors of other participants. For computer agents to interact successfully with people
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in these mixed human-computer task settings, they need to begood partners, meet-
ing people’s expectations of others. In designing computeragents for such settings,
it is thus important to understand the decision-making strategies people deploy when
they interact with others and to evaluate various computational strategies for interact-
ing with people. Formally modeling the behavior of people, and in particular their
decision-making behaviors, raises significant artificial-intelligence challenges.

In this paper, we show that for best performance, computers participating in mixed
human-computer task settings must model human behavior in away that reflects the
contextual settingthat embeds the decisions people face. We demonstrate that differ-
ent contextual settings influence significantly human decision-making, by presenting
to people identical multi-agent decision-making problemsframed in different types of
contextual settings, and by providing detailed measurements of the outcomes. In ad-
dition, we trained computational models on data obtained inthese different contextual
settings, and evaluated the performance of these models.

Our experiments deploy a conceptually simple but expressive game called Colored
Trails (CT) Groszet al. (2004) to provide atask contextfor decision-making. CT ex-
plicitly manifests goals, tasks, and resources in a way thatis compelling to people, yet
abstracts away from a complicated underlying domain. It thereby enables investigators
to focus on people’s decision-making strategies, rather than specifying and reasoning
about individual domain complexities. We used a version of CT that included a one-
shot take-it-or-leave-it negotiation round between two agents that needed to exchange
resources to achieve their goals.

Experiments in behavioral economics typically use even more highly abstracted
contextual settings, such as decision trees or normal form tables, that fully specify
payoffs for players from potential strategies and completely hide any underlying rela-
tionship between tasks, goals, and resources. The decisions engendered by CT games
can be described as a table of payoffs as well. We call this abstract representation
the table context. Game-theoretic tools can be applied in table contexts to provide an
idealized notion of appropriate decision-making behavior.

We show that people presented with identical decision-making problems in these
two contextual settings perform strikingly differently, both qualitatively and quantita-
tively. We analyzed people’s behavior in terms of various social criteria, for which
we give a precise definition in terms of the CT game. Results show that when mak-
ing decisions in the task context, people are more helpful and less competitive — less
game-theoretic — than when making decisions in the table context. Surprisingly, the
results also indicate that the task context improves people’s overall performance.

To evaluate the effects of these differences on computer agents, we trained predic-
tive models on data obtained in both types of contextual settings. The models explic-
itly represented social factors that have been shown to affect people’s behavior Galet
al. (2004). The model trained on data obtained in the task context outperformed the
model trained on data obtained in the table context. These experiments show that for
optimal performance, agents need to model how people make task-related decisionsas
presented to them in context. Furthermore, overall performance may be better if that
context is task-oriented, rather than payoff-oriented,even for the same tasks.

For designers of intelligent agents, the important lesson of these experiments is
that the design of computer agents that will operate in mixedhuman-computer settings
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must consider how the decisions presented to people will be contextualized and reflect
the human decision-making process in that contextual setting, not merely in a purely
idealized (even if theoretically equivalent) manner. As much as we might like it, there
is no way for AI systems to escape into pure game theory in building agents that will
participate in mixed systems.

2 Empirical Methodology

This section describes the two contextual settings, task context and table context, we
investigated and the experiments we conducted in those settings.

In the task context, a 2-player CT game was played on a 4x4 board of colored
squares with a set of chips. One square on the board was designated as the goal square.
Each player’s icon was initially located in a random, non-goal position. To move to an
adjacent square required surrendering a chip in the color ofthat square. Players were
issued four colored chips. They had full view of the board andeach others’ chips, and
thus they had complete knowledge of the game situation.

Players were designated one of two roles:proposerplayers could offer some subset
of their chips to be exchanged with some subset of the chips ofresponder players;
responderplayers could in turn accept or reject proposers’ offers. Ifno offer was made,
or if the offer was declined, then both players were left withtheir initial allocation of
chips. Chip exchanges were enforced by the game controller:after the negotiation
ended, both players were automatically moved as close as possible to the goal square.

The scoring function for players depended solely on their own performance: 100
points for reaching the goal; 10 points for each tile left in an player’s possession; 15
points deducted for any square in the shortest path between player’s final position and
the goal-square. These parameters were chosen so that getting to the goal was by far the
most important component, but if an player could not get to the goal it was preferable
to get as close to the goal as possible. The score that each player received if no offer
was made was identical to the score each player received if the offer was rejected by
the deliberator. We refer to this score as theno negotiation alternativeand to the score
that each player received if the offer was accepted by the deliberator as theproposed
outcomescore.

Snapshots of the CT GUI of one of the games used in the experiment is shown in
Figure 1. The Main Window panel, shown in Figure 1(a), includes the board game,
the goal square, represented by an icon displaying the letter G, and two icons, “me”
and “sun”, representing the location of the two players on the board at the onset of
the game.1 The bottom part of the Main Window panel, titled “chips”, shows the chip
distributions for the players. In the game shown here, both players lack sufficient chips
to get to the goal square. A proposer uses the Propose Exchange panel, shown in
Figure 1(b), to make an offer to a responder.

The tablecontext consisted of a completely abstract representationof a CT game
as a list of potential offers that could be selected by the proposer player. Each offer was
represented as a pair of payoffs for the proposer and the responder. Figure 2 shows a

1CT colors have been converted to grey scale in this figure.
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(a) Main Window
Panel (onset of game)

(b) Propose Exchange
Panel

Figure 1: Snapshots of Interaction in a Task Context

Figure 2: Snapshot of an Interaction in a Table Context

snapshot of a game in this representation as seen from the point of view of a proposer
player. Each cell in the table represents an offer, and selecting a cell corresponds to
choosing the offer associated with its payoffs. One of the cells represents the no-
negotiation alternative, which is presented as the defaultoutcome of the interaction.

A total of 32 subjects participated in the experiment, equally divided between the
two conditions. They interacted with each other for 96 rounds. Participants in the
task condition interacted with each other using the CT environment, whereas those in
the table condition interacted with each other using the payoff matrix representation.
Participants only interacted with others in their condition group;they were not provided
any information about each other. In both conditions, participants were compensated
in a manner that depended solely on their individual scores,aggregated over all rounds
of interaction.

For each CT round that was played in the task condition, an equivalent round was
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played in the table condition, in the sense that the payoff pair at the intersection of each
row and column represented the score in the CT round for the corresponding offer and
response. For example, the payoff matrix shown in Figure 2 isequivalent to the CT
game shown in Figure 1.

3 Results and Analysis

We use the termtable proposersand task proposersto refer to the participants that
were designated with the proposer role in the table or task condition respectively and
similarly for the responder role. We use the termoffer benefitto refer to the difference
between the proposed outcome for an offer and the no-negotiation alternative score of
the round. We measured proposers’ behavior in terms of threefeatures: The degree
to which proposers wereselfishor helpful was defined in terms of the average offer
benefit they proposed for themselves or for responders, respectively; the degree to
which proposers werecompetitivewas defined in terms of the difference between the
average offer benefit they proposed for themselves and the offer benefit provided to
responders. Although we have given a psychological interpretation to these features,
we do not imply that they are independent. For example, proposers can exhibit both a
degree of selfishness and a degree of helpfulness based on theaverage benefit of their
offers.

3.1 The Effect of Contexts on Human Behavior

Table 1 presents the average offer benefit to participants inboth task and table con-
dition for each role designation. Table proposers offered significantly more benefit to

Table 1: Average Benefit of Offer
Offer Benefit to Num.

Proposer Responder acceptances
Task 82.3 47.6 62 (77%)
Table 98 36 69 (77%)

themselves than did task proposers (t-testp < 0.05). Also, table proposers offered
significantly less benefit to table responders than task proposers offered to task respon-
ders (t-testp < 0.01). Thus, the task context had the effect of making proposers more
helpful and less selfish when interacting with responders.

The difference between the average offer benefit to proposers and to responders is
positive in both conditions (t-testp < 0.05). Although in both conditions proposers
are competitive. the offer difference was larger in the table condition than in the task
condition (t-testp < 0.05). Thus, on average table proposers were more competitive
than task proposers. We hypothesized that table proposers made competitive offers
more often than did task proposers. To test this hypothesis,we performed a within-
round comparison of the offer benefit in both conditions. Table 2 presents the number
of rounds in which the difference between the proposed benefit for proposers and re-
sponders was positive (column “Proposer> Responder”) and the number of rounds in
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Table 2: Frequency of Competitive Offers
Proposer> Responder Proposer< Responder

Task 26 (27%) 51 (60%)
Table 60 (62%) 24 (28%)

which this difference was negative (column “Proposer< Responder” ). As shown by
the table, table proposers made offers that benefited themselves over responders sig-
nificantly more often than task proposers (chi-squarep < 0.05). These results confirm
that table proposers are more likely to be competitive than proposers.

Table 2 also shows that 62% of all offers made by table proposers benefitedthem-
selvesmore than table responders, while 60% of all offers made by task proposers
benefited taskrespondersmore than themselves (chi-squarep < 0.05). This strik-
ing result indicates that task proposers were helpful more often than they were selfish,
whereas table proposers were selfish more often than they were helpful.

Having established that the context in which decisions are made affected the be-
havior of proposers, we investigated whether it affected the behavior of responders.
It is more difficult to perform within-round comparisons of responder behavior across
task and table conditions, because the decision of whether to accept or reject an offer
depends on the exchange offered by proposers. For the same round, this exchange may
be different for task and table conditions. As shown in Table1, there was no difference
in the ratio of exchanges accepted by responders (77%) between conditions. However,
this result does not mean that responders were not affected by context; as also shown
in Table 1, they were responding to exchanges that were more helpful to them in the
task condition. We expected this pattern to hold for accepted offers as well; thus, we
expected that the offers that wereacceptedby responders were more helpful to them in
the task condition than in the table condition.

Table 3: Average Benefit for Accepted Exchanges
Proposer Responder Total

Task 79.5 56.4 135.9
Table 85.6 40.7 126.3

Table 3 shows the exchange benefit to proposers and responders averaged over all
accepted proposals, as well as the total accumulated benefitin each condition. The
benefit to responders from accepted proposals was significantly higher in the task con-
dition than in the table condition, and conversely for the proposers (t-testp < 0.05).
These results indicated that task responders outperformedtable responders, whereas
table proposers outperformed task proposers. Interestingly, as the rightmost column
shows, the total performance (combined proposers and responders scores) was higher
in the task condition than in the table condition. The benefitfor accepted exchanges is
a measurement of performance, because the outcome of each round of interaction was
fully determined by the action of the responder (t-testp < 0.1). Although this result
was not significant at thep < 0.05 confidence interval, the trend it indicates suggests
that task context has a positive effect on the combined performance of participants.
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To address the question of whether the difference in behavior can be explained by
the lack of an explicit representation of payoff in the task condition, we ran an exper-
iment that used the CT game, but allowed subjects to view the payoffs for potential
offers for all players. This intermediate representation preserves the task context as
well as displaying the payoff function for both players. Results using the same set of
games as in the original experiment show that there was no significant difference in the
average benefit allocated to proposers and responders in this intermediate representa-
tion than in the task condition.

In addition, we ruled out the effect of cognitive demands on subjects by including
decision support tools for both modes of decision representation. In the CT game,
subjects could query the system for suggestions about the best paths to take given any
hypothetical chip distribution. When presented with a table of payoffs, subjects could
sort the table by their own, or the other’s benefit. In this way, subjects were allowed
to focus on interacting with each other rather than the cognitive complexity of the
decision-making.

3.2 Comparison with Game Theoretic Strategies

We now turn to a comparison between the offers that were made in each condition and
the offers dictated by the exchange corresponding to the Nash equilibrium strategy. We
use the termNE exchangeof a round to refer to the exchange prescribed by the Nash
equilibrium strategy profile for the round. This exchange offers the maximum benefit
for the proposer, out of the set of all of the exchanges that offer non-negative benefits
to the responder. In our scenarios, the NE exchange generally amounted to selfish,
unhelpful, competitive offers.

We expected table proposers to be more likely to offer NE exchanges than task pro-
posers. Table 4 shows the number of NE offers made by proposers in both conditions.
The proportion of NE offers was significantly higher in the table condition (59%) than
in the task condition (15%) (chi-squaret < 0.01).

Table 4: Frequency of Nash Equilibrium Offers
Num.. offers

Task 13 (15%)
Table 57 (59%)

To compare the extent to which the exchanges made by proposers in the two con-
textual settings differed from the NE exchange, we plotted the average benefit offered
by NE exchanges and by proposed exchanges for both task and table conditions, as
shown in Figure 3.

The difference between the average benefit to responders from the NE offer and
the average proposed exchange was close to zero in the table condition, and large and
positive in the task condition (t-testp < 0.05). Similarly, the difference between the
benefit to proposers from the NE offer and the average proposed exchange was was
close to zero in the table condition, and large and negative in the task condition (t-test
p < 0.05). The Euclidean distance between the two points representing the NE benefit
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to proposers and responders was significantly larger in the task condition than in the
table condition. In fact, there was no statistically significant difference between offers
in the table condition and NE offers. These results are strikingly significant, showing
that participants who make decisions in the table conditionare more likely to follow
the game-theoretic paradigm.

There is a discrepancy between these findings and those of thebehavioral economic
studies, which show that people donot generally adhere to game theoretic equilibria,
and display variance within their play. Several differences between the structure of
the negotiation scenario used in our experiments and the games traditionally used in
behavioral economics may explain this difference. First, our scenario presented partic-
ipants with some guaranteed reward (the no-negotiation alternative) if agreement was
not reached at the end of the interaction. Traditional behavioral economic games do
not provide such reward. (For example, if no agreement is reached in the ultimatum
game, both players end up empty handed.) It is possible that in table contexts, pro-
posers saw fit to make selfish exchanges, because they could always fall back on their
guaranteed outcome if that offer was rejected.2 Second, each interaction in our exper-
iment varied which player needed the other to get to the goal.In some rounds, both
players were mutually dependent on each other. In traditional behavioral economic ex-
periments, players’ dependencies are static. It may be casethat table participants were
more likely to follow game theoretic equilibria in one type of dependency but not in
others.

4 The Effect of Contexts on Learner Agents

This section presents results that indicate the effects of task contexts on the perfor-
mance of computer systems that learn a model of people’s negotiation behavior. Using
the data collected from the task and table contextual conditions, we trained a compu-
tational model for predicting the actions of human proposers. We adopted the model

2This phenomena, deemed the “endowment effect”, has been documented in the psychology literature
Kahneman, Knetsch, & Thaler (1991).
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proposed by Gal & Pfeffer (2006) for predicting people’s bidding behavior in multi-
attribute negotiation. In this model, proposals are generated by converting people’s
utility functions into a stochastic function that assigns aprobability to each potential
exchange at each round of interaction. A soft-max function is used to make the likeli-
hood of each exchange proportional to the likelihood of other possible exchanges. This
model is well suited for capturing certain aspects of human behavior: The stochastic-
ity of the soft-max function allows for proposers to deviatefrom choosing the action
associated with the highest utility, but in a controlled way. In addition, the likelihood
of choosing an exchange that incurs a high social utility will increase if there are few
other similar exchanges that incur high utility, and will decrease if there are many other
similar exchanges.

For each potential exchange, we defined a “social” utility function for proposers
that is a weighted sum of their own benefit from the offer, the benefit to the responder,
and the difference in benefit for the proposer and the responder. These features capture
the social factors (i.e., selfishness, helpfulness and competitiveness) that we defined
in the Results section. The model parameters, represented by the feature weights of
the utility function, were trained using supervised learning. The labeled training set
consisted of the exchanges made by proposers in the task and table conditions. Each
instance consisted of pairs of possible exchanges(x∗, xj), wherex∗ was the offer made
by the proposer, andxj is any other possible exchange. To estimate the feature weights
of the utility function, we used a gradient-descent technique that learned to predict the
chosen offerx∗ given any other offerxj :

P (x∗ chosen| x∗ or xj chosen, s∗, sj) =
1

1 + eu(x∗)−u(xl)

Here,s∗ denotes the social factors associated with the offer that was proposed. This
probability represents the likelihood of selectingx∗ in the training set, givenxj . The
error function to minimize is defined as the extent to which the model is not a perfect
predictor of this concept,

errj = 1 − P (x∗ chosen| x∗ or xj chosen.s∗, sj)

Taking the derivative of this function, we obtain the following update rule for the fea-
turesw, whereα is a constant learning rate, andd = s∗ − sj .

w = w + α(errj)
2 · (1 − errj) · d

We learned separate models for the task and table contexts. In both cases, we
trained and tested the algorithms separately, using ten-fold cross validation. We ob-
tained the following average posterior parameter values for the features selfishness,
helpfulness and competitiveness in each condition.

Condition Learned weights
Task (5.20, 3.2, 0.40)
Table (8.20, 1.3, 8)

As shown in the table, both task proposers and table proposers are selfish, in the sense
that they place high weight on their own benefit. However, table proposers assign
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higher weight to their own benefit than do task proposers, suggesting they are more
selfish than task proposers. Task proposers also assign a higher weight to helpfulness
and significantly lower weight to competitiveness than table proposers. These values
align with the trends reported in the Results and Analysis section.

We evaluated both models on test sets comprised of held out data from both task
and table conditions. We report the average negative log likelihood for all models in
the following table as computed using ten-fold cross validation. A lower value for this
criteria means that the test set was given a higher likelihood by the model.

Training / Testing Average Log
Condition Likelihood
Task / Task 0.144
Table / Task 1.2
Table / Table 0.220
Task / Table 1.2

As shown by the table, the model trained and tested on the taskcondition was able to
fit the data better than the model trained and tested in the table condition, indicating
that computer agents participating in mixed human-computer task settings must model
human performance in a way that reflects thecontextual settingthat the humans are
faced with.

In addition, the model trained in the task condition outperformed the model trained
in a table context when both models were evaluated in task contexts. (And conversely
for the model trained in the table condition.) The extent to which both models under-
performed when evaluated in the context they were not trained on was similar for both
conditions. These results clearly imply that the context inwhich decisions are placed
affects the performance of computer models that learn to interact with people.

5 Related Work

Our work extends the studies in behavioral economics that measure the behavior of
human participants in controlled laboratory experiments.These studies have explored
the conditions in which people depart from selfish reasoningand exhibit a varying
degree of preference for others’ welfare. For example, people have been shown to
engage in cooperative behavior in a one-shot prisoners’ dilemma game about half the
time, despite the fact that their dominant strategy is to defect.

In behavioral economic experiments, decisions are traditionally placed in a table
context. There is a direct mapping from participants’ actions to their outcomes; all
decisions are reduced to choices between explicit utility values; participants interact
using a “low band-width” representation, summarized in a payoff matrix or tree format.
CT is similar to games used in behavioral economics in that itabstracts away from the
real-world, but it abstracts less, removing only domain specific contexts, and preserving
the key interaction between tasks, goals and resources. CT can provide a task context
in which to place many standard concepts from economic games, such as the ultimatum
game and the prisoner’s dilemma.

10



Our work is fundamentally different from research in the decision and management
science literature that addresses on the effects of graphical versus tabular representa-
tions on people’s decision-making Vessey (1991); Jarvenpaa (1989). This work has
shown that performance on particular tasks is enhanced whenthere is a good match
between the mode used to represent a task and the cognitive resources required to
complete it. It aims to present information in a way that provides good “cognitive
fit”, a vivid representation that overcomes the constraintsof human information pro-
cessing. In contrast, we examine whether the structural features that are inherent in
task contexts, such as the relationship between goals and resources, affect people’s
decision-making. We are not concerned with the cognitive implications of different
context settings or with their mode of representation. In fact, we control for the effects
of cognitive load in both task and table context settings by providing participants with
decision support tools.

Lastly, recent work on modeling the social factors that affect people’s decision-
making behavior have concentrated on task contexts only Marzo et al. (2005); Galet
al. (2004). This work extends these approaches by comparing models of decision-
making in task contexts and table contexts.

6 Conclusion and Future Work

We have shown that when making decisions placed in a task context, people behave
more helpfully, less selfishly and less competitively than when making decisions placed
in a table context. Further, people are significantly more likely to behave according to
game theoretic equilibria in table contexts, which has a negative effect on their perfor-
mance, compared to their behavior in task contexts. Moreover, people do not behave
differently in task contexts when they are given access to the possible payoffs for them-
selves and others. We induced predictive models of the decision-making processes,
showing that when learning in task contexts, computer players are better at predicting
people’s behavior than when learning in completely abstract contexts.

The results reported in this study suggest that when building a system for human-
computer interaction, placing the decisions in task contexts will improve the perfor-
mance of both people and computer agents that learn from people. Therefore, designer
of systems that involve people and computers interacting together need to decide how
to appropriately contextualize the decisions they presentto participants.

While our experiments were performed in a relatively simpleand flat task context,
the fact that differences were found in this context suggestthat it is likely there will be
even greater ones in more complex settings. Our results provide a guideline for agent
designers, specifically that the right context should be used when investigating human
decision-making processes. We have presented an infrastructure for conducting such
an investigation, and a methodology for how it might be done.
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