

Dyson: An Architecture for Extensible Wireless LANs

Rohan Murty, Jitendra Padhye, Alec Wolman, Matt Welsh

TR-02-09

Computer Science Group
Harvard University

Cambridge, Massachusetts

Dyson: An Architecture for Extensible Wireless LANs

Rohan Murty†, Jitendra Padhye‡, Alec Wolman‡, Matt Welsh†

†Harvard University,‡Microsoft Research

ABSTRACT
As wireless local area networks (WLANs) continue to evolve. the fun-
damental division of responsibility between the access point (AP) and the
client has remained unchanged. In most cases, clients make independent
decisions about associations and packet transmissions, using only locally
available information. Furthermore, the IEEE 802.11 standard defines a
very limited interface for transferring information between the APs and
the clients. These factors impede customization of WLANs to meet site-
specific challenges, and in a more general sense, impede rapid innovation
to face challenges posed by new applications such as VoIP.

This paper describes Dyson, an extensible architecture for WLANs, tar-
geted primarily at enterprise scenarios. Our architecture is based on cen-
tralized, global management of channel resources. To provide extensibility,
the interface between the infrastructure and clients is simple and relatively
low-level, and can be controlled through a programmatic interface. Clients
provide primitives that allow the central controller to control many aspects
of client behavior. The controller can also instruct clients to gather and re-
port information about channel conditions. We show that using these simple
primitives, and by leveraging historical information, the network designer
can easily customize many aspects of the WLAN behavior.

We have built a prototype implementation of Dyson, which currently
runs on a 23-node testbed distributed across one floor of a typical academic
building. Using this testbed, we examine various aspects of the architecture
in detail, including a range of policies for improving client-AP associations,
providing user-specific airtime reservations, mitigating the effects of inter-
ference, and improving mobile handoffs. We show that Dyson is effective
at providing greater efficiency while opening up the network to site-specific
customizations.

1. INTRODUCTION
Wireless networks are struggling to innovate in the face

of new application demands, such as media streaming, voice
over IP, and increasing use of mobile devices, such as WiFi
enabled phones. At the same time, achieving efficient use of
the wireless spectrum is becoming more challenging, given
that most wireless LANs perform network management in
an entirely decentralized fashion. Enterprises wishing to roll
out new applications, services, or policies in a wireless LAN
are faced with the ossification of standards and the high vari-
ance across different vendors’ implementations. In this pa-
per, we argue that it is time to rethink the architecture of
wireless networks from the ground up, to enable greater ob-
servability, control, and extensibility to meet future needs.

Although wireless LANs have evolved over time, includ-
ing significant improvements to the PHY and MAC layers,
one critical aspect of the WLAN architecture that has re-
mained unchanged is the interface between clients and ac-
cess points. Each node makes independent decisions about
AP associations, PHY data rates, transmission power level,

and other parameters that have a substantial impact on over-
all network performance. These decisions are typically based
on local observations of the network state, with no explicit
coordination between nodes. Further complicating the mat-
ter, different vendors introduce very different policies in their
WLAN firmware and software, as this is viewed as an oppor-
tunity for innovation and competition. However, wresting
control over the network is difficult or impossible given this
“every station for itself” mentality.

The current trend in commercial WLANs is moving to-
ward the use of a central controller that manages access points
across an enterprise [1, 2]. However, this approach does not
incorporate the perspective of the clients in the network. We
argue that effective network management must involve ob-
servation and control in a holistic manner, involving both
access points and clients. While some research systems [20,
12, 31] and standardization efforts [15] try to address this is-
sue, they are hamstrung by limitations of the 802.11 design.

In this paper, we present Dyson, a new wireless network
architecture that is designed to support global network ob-
servation and historical knowledge, deep control, and ex-
tensibility to meet future needs. In Dyson, both clients and
access points coordinate with the network infrastructure and
provide detailed measurements on location, radio channel
conditions, connectivity, and observed performance. Mea-
surements are stored in a persistent database, allowing the in-
frastructure to adapt behavior based on historical knowledge
of network state. For example, the system can learn user
mobility patterns in order to improve handoff performance.
Further, clients and APs expose a control interface permit-
ting the infrastructure to manage many aspects of their op-
eration, including associations, channel selection, PHY rate,
and transmission throttling. Dyson also provides a Python-
based scripting API that allows the central controller’s poli-
cies to be extended for site-specific customizations and new
optimizations that leverage historical knowledge.

Put together, these features provide the controller with ex-
tensive visibility into the network’s state, including informa-
tion that can only be gleaned from clients, such as the pres-
ence of hidden terminals and signal strength from multiple
APs. Dyson’s control framework can yield better overall net-
work efficiency, such as optimizing client/AP associations
using knowledge of channel utilization and interference. Fi-
nally, Dyson enables a high degree of extensibility of the net-
work’s policies, making it easy to customize behavior, such
as by providing user-specific airtime reservation, or shifting

1

Client Client Client Client Client

Measurements
collection

Policies

AP DB

Central
Controller

Measure-
ment DB

Network map

APAP AP

Commands
Measurements

Figure 1: The Dyson network architecture.

VoIP clients to a separate channel to avoid interference. Be-
cause it is programmable, Dyson is also intended to provide
a vehicle for research into new mechanisms for managing
wireless LANs.

This paper makes the following contributions. First, we
present the Dyson architecture (Section 2) and an implemen-
tation deployed over a 23-node testbed deployed across one
floor of a typical academic building (Section 3). Second, us-
ing this testbed, we examine various aspects of the architec-
ture in detail, and demonstrate a range of policies (Section 4)
for optimizing associations, handling VoIP clients, reserving
airtime for specific users, and optimizing handoffs for mo-
bile clients. Third, we perform an extensive performance
study of Dyson and show that this architecture is effective
at improving network performance. We also discuss related
work (Section 5) and areas for future work (Section 6).

2. DYSON ARCHITECTURE
The Dyson network architecture, shown in Figure 1, con-

sists of a number of wireless clients, access points (APs),
and a single central controller (CC). As described below,
both APs and clients report measurements to the infrastruc-
ture, which are used to construct a dynamic network map
representing the state of the network. Measurements are also
logged to a database for historical analysis, and static infor-
mation on AP location and MAC addresses are stored in a
separate AP database. A set of administrator-defined poli-
cies are used to trigger network configuration changes via
commands delivered to APs and clients by the CC.

Dyson builds upon existing 802.11 standards, including
CSMA MAC and the format of the data and management
frames. As a result, Dyson can be implemented entirely us-
ing existing 802.11-compatible hardware. The key differ-
ence between Dyson and existing enterprise WLANs is the

manner in which network management and control is per-
formed. The Dyson architecture requires both clients and
APs to be Dyson-aware. However, a Dyson-enabled client
can operate both in 802.11 and Dyson modes. In Section 6
we discuss mechanisms to support legacy clients.

The use of a central controller in enterprise WLANs is
widespread.1 For example, in Aruba [1] networks, the CC
is responsible for assigning radio channels and transmission
power levels to individual APs based on global observation
of the network traffic. Dyson significantly augments this de-
sign by extending both observation and control to the wire-
less clients as well as the APs. Dyson clients are responsible
for collecting periodic measurements of channel and traffic
conditions and reporting them to the CC, as well as respond-
ing to commands from the CC that control many aspects of
transmission parameters, as described below.

A key question that arises in this regime is how much con-
trol clients should yield to the infrastructure. At one ex-
treme, the CC could control clients at a very fine-grained
level, for example, by dictating individual packet transmis-
sion timings. However, this design would require substantial
control overhead, and would fail to respond rapidly to lo-
cal changes in channel conditions (e.g., interference) at the
client. In Dyson, we opt to affect control at a higher level,
namely that of channel allocations, client-AP associations
and throttling. Although cruder than packet-level control,
this design strikes a balance between the overhead for com-
mand issue and the ability of the network to drive towards
more efficient configurations.

One implication of this design is that we assume that Dyson
clients are willing participants in the system, and are capa-
ble of accurately and truthfully responding to measurement
requests and commands. There is, of course, the potential
that malicious or buggy clients could misbehave and degrade
network performance. However, we argue that the degree of
trust that Dyson places in clients is not substantially greater
than that in conventional 802.11 networks, in which it must
be assumed that clients correctly obey the protocol. We as-
sume that Dyson clients are authenticated using 802.1x.

The power of the central controller derives from its global
knowledge of the state of the network and ability to control
both APs and clients at fine granularity. The CC also main-
tains a database to store received measurements, permitting
long-term historical analysis of network performance.

A key benefit in Dyson is the ability to collect client-side
measurements, providing the CC with greater visibility and
control over the network state. Client-side information can
be used to resolve sources of ambiguity that would arise
with AP-only observations. Examples include detection of
hidden terminals, awareness of mutual connectivity between
APs and clients, and mapping channel airtime utilization.
While client participation has been explored by several pre-
vious systems, such as MDG [12] and SMARTA [6], Dyson
provides a flexible framework in which a wide range of poli-
cies can be specified programmatically.

2.1 Measurement collection
1Note that the CC need not be physically centralized, as this func-
tionality can be replicated across multiple physical hosts for relia-
bility and scalability.

2

Measurement Description
numPackets Number of pkts received
totalBytes Total bytes received
totalRSSI Total RSSI of received pkts
connectivity[] List of tuples

〈srcmac,numPkts, totalRSSI 〉
packetsPerPhyRate[] One counter for each PHY rate
totalAirtime Airtime used by packets (size × PHY

rate)
numTxFailures Number of Tx failures
numRetransmissions Number of ARQ retransmissions
airtimeUtil Channel airtime utilization

Table 1: Measurements collected by Dyson nodes.

In Dyson, both clients and APs are responsible for collect-
ing passive measurements on the state of the network, report-
ing measurements to the CC, and responding to commands
issued by the CC to affect local parameters. As described
above, the granularity of measurements and commands is
chosen to avoid high overheads for client/CC interactions,
but still yield adequate control over client behavior by the
infrastructure.

Measurement collection in Dyson supports network-wide
optimizations based on both AP and client-side knowledge
of the network state. This provides the CC with global in-
formation on various factors that affect client performance,
such as traffic patterns, interference, hidden terminals, and
congestion. This approach obviates the need for a separate
wireless monitoring infrastructure [14, 8].

Each client and AP in the system records a set of statis-
tics, summarized in Table 1. For each received packet, a
set of counters are incremented to track the total number
of packets, total packet size, total airtime utilization, and
other measures. Dividing counters by the number of re-
ceived packets can be used to calculate mean values over a
measurement window. Clients maintain a single set of these
counters, whereas the AP maintains these counters for each
associated client, allowing measurements to be collected for
each separate uplink. In addition to the per-packet statistics,
nodes record the mean airtime utilization (reported by the
radio hardware) of the radio channel.

APs periodically query their associated clients for their
measurements, which report the data to the AP and clear
their counters. The AP then pushes the collected client mea-
surements, as well as its own, to the CC. The AP’s measure-
ment collection period can be adjusted by the CC to trade-
off reporting latency and measurement traffic overhead. Our
measurements in Section 4.7 show that for moderate-sized
networks, the traffic overhead is less than 1%.

2.2 Network map
The central controller uses collected measurements to main-

tain a network map representing the global state of the Dyson
network. The network map is the key data structure accessed
by Dyson’s policies (Section 4) in order to drive reconfigu-
ration. The network map is updated each time new measure-
ments are pushed to the CC by an AP. Policies can read the
complete network map as well as push new information into
the network map. This allows individual policies to augment

the global state maintained by the CC, as well as policies to
be composed.

The map consists of several components:

• Node location: A table of the physical location of each
AP and client in the system, indexed by MAC address.
AP locations are static, whereas client locations are
computed using the algorithm described in [13]. This
information can be used for determining the physical
location of network hotspots, as well as for reducing
handoff latency for mobile clients, as described in Sec-
tion 4.6.

• Connectivity: A directed connectivity graph is main-
tained, where vertices represent nodes (clients or APs)
and edges represent the ability of one node to overhear
packets of another node. For each unique MAC ad-
dress that a node overhears during a measurement in-
terval, the mean RSSI value of packets from that MAC
address are reported to the CC. The connectivity graph
contains a directed edge for each pair of MAC addresses.
While clients are only capable of reporting links on
their current channel, APs can use a secondary radio
to perform background scanning and report observed
connectivity on every channel. An edge is removed
from the graph if no packets are observed on the link
for 30 sec. The connectivity graph is used in assigning
clients to APs, detecting hidden terminals, and manag-
ing handoffs.

• Airtime utilization: Each node measures the airtime
utilization of the radio channel in its vicinity. The net-
work map includes a hash table mapping a node’s MAC
address and channel number to its airtime utilization
estimate. This information can be used by a wide range
of policies to detect congestion, balance uplink and
downlink fairness, and optimize client/AP associations.
APs can measure airtime on every channel using the
secondary scanning radio.

• Historical measurements: Collected measurements
are also stored in a persistent database, permitting poli-
cies to make use of historical information when mak-
ing decisions about network reconfiguration. As an
example, a policy may wish to consider the historical
interference pattern between two APs, or variance in
the network congestion at different hours of the day,
when driving network reconfigurations. The handoff
optimization policy described in Section 4.6 uses his-
torical information on node connectivity and mobility
patterns to improve handoff latency.

The network map serves primarily as input to the various
policies for driving network configurations. However, it can
also serve an auxiliary role to assist a network administrator
in understanding AP coverage and sources of performance
degradation. For example, visualizing the airtime utilization
graph as well as the associated client and AP locations can
provide real-time information on network hotspots.

2.3 Central controller

3

SetRate(r) Set PHY rate
SetChannel(c) Set channel
SetTxLevel(t) Set transmission power level
SetCCAThresh(t) Set CCA threshold
SetPriority(p) Set 802.11e priority
Throttle(r) Throttle outgoing traffic at the speci-

fied rate r
Handoff (c, ap, chan) Handoff client c to AP ap on channel

chan
AcceptClient (c) Associate AP with client c
EjectClient (c) Disassociate client c

Table 2: The Dyson command API. Commands in bold
are applicable to APs only.

The central controller is responsible for managing the en-
tire Dyson network based on collected measurements from
clients and APs. Its job is to apply administrator-defined
policies to the current network map, and issue commands
to set parameters of clients and APs according to the policy
decisions.

The Dyson command API is shown in Table 2. These
commands are intended to provide a rich set of knobs for
controlling the network’s operation while limiting overheads
for command issue. Commands set parameters such as the
transmission power level, CCA threshold, 802.11e priority
levels, and PHY data rate. The Handoff, AcceptClient,
and EjectClient commands control client-AP associa-
tions, as described in the next section. Note that clients do
not decide themselves which AP to associate with; this is
under the control of the Dyson infrastructure.

The CC sends commands to APs directly. Commands to
clients are relayed through the AP with which the client is
associated; in this way the client need not be aware of the
CC’s identity, and the CC’s functionality can be decentral-
ized. Commands are exchanged using MAC-layer control
messages which are ACKed by the receiving node. For AP-
client commands, ARQ is used to ensure commands are de-
livered reliably.

2.4 Policy Engine
Dyson’s architecture is designed to support extensibility,

composability, and separation of concerns, in order to tune
network performance as well as impose site- and client-specific
policies. Each policy is encapsulated in a software module
that runs on the CC, takes the network map as input, and is-
sues commands to APs and clients as output. As described
above, policies can also update and augment the network
map itself.

Dyson has a predefined set of policy modules providing
commonly-used functionality, but it is possible for new poli-
cies to be implemented and loaded into the central controller
as needed. Policies are implemented in Python and are rel-
atively easy to write, as we will show below. This approach
enables network designers to update the policies used by
a Dyson network installation over time in response to new
demands or shifting priorities. We also envision third par-
ties developing new policies for Dyson that can be readily
plugged into an existing deployment.

In our current design, policy composition and dependen-

Figure 2: Dyson testbed deployment

cies must be handled manually by policy designers. There
is nothing to prevent two policies from “competing” (say, by
issuing conflicting commands in response to the same event
in the network); each policy should clearly document its own
behavior to avoid unexpected results.

Each policy runs as a separate thread on the CC and is re-
sponsible for its own scheduling. Typically, a policy will run
with some predefined period, but a policy can also trigger
execution on some condition being met (for example, an up-
date to some element in the network map). Standard thread
synchronization primitives can be used to implement more
sophisticated cross-policy interactions.

In Section 4, we demonstrate a set of policies that high-
light different aspects of Dyson’s global network visibility
and deep control over both APs and clients.,

3. IMPLEMENTATION AND TESTBED
We have implemented a prototype of the Dyson architec-

ture using the ALIX 2c2 single-board computer (500 MHz
AMD Geode processor with 256 MB DRAM) running Free-
BSD 7, coupled with dual CM 9 Atheros-based 802.11a/b/g
radios. Each node can act as either a Dyson client or an
access point; only APs make use of the second radio for col-
lecting channel utilization measurements.

We have deployed a testbed to 23 nodes across one floor
of an academic office building, as shown in Figure 2. Each
node is connected to an Ethernet network for control. The
central server is implemented on a separate machine running
FreeBSD with 2 GB of RAM. All experiments presented in
this paper use 802.11a to avoid interference with existing
802.11b/g networks in the building.

To support Dyson, it was necessary to modify the FreeBSD
Atheros driver to add support for statistics collection and the
Dyson command API, as well as to disable local autorat-
ing. Each node runs a Python-based daemon that exposes
the Dyson measurements and command API via an XML-
RPC interface, and communicates with the modified Atheros
driver through ioctl calls. The central controller is also im-
plemented in Python; policies are loaded as Python modules
at startup time.

The commands listed in Table 2 were implemented via
modifications to the Atheros driver. Most of the commands
(such as SetTxLevel, SetChannel, and so forth) sim-
ply set driver parameters. Handoff informing a client to
switch channels and associate with the specified AP. This

4

eliminates the need for scanning, provided the destination
AP is still on the specified channel. The Throttle com-
mand makes use of dummynet, a FreeBSD traffic shaping
tool, to limit the rate of outgoing traffic. Throttle simply
sets the dummynet outgoing bandwidth limit on the radio
interface to the specific rate.

4. POLICIES AND EVALUATION
To illustrate the power of the Dyson framework, in this

section we describe and evaluate six separate policies that
demonstrate the key facets of our design. In particular, we
present the following policies implemented using Dyson’s
policy API:

1. Capacity aware associations that assigns clients to APs
based on airtime availability;

2. Interference mitigation using connectivity information
from clients and APs;

3. VoIP-aware handoffs that causes VoIP and bulk clients
to be assigned to different APs;

4. User-specific airtime reservations that gives priority to
certain clients over others;

5. Uplink/downlink load balancing to mitigate the impact
of bulk upload clients on throughput fairness; and

6. Predicting handoffs based on historical knowledge of
a user’s mobility patterns.

Taken together, these policies highlight Dyson’s key design
elements: client-side observation, use of historical knowl-
edge, site-specific customization, and deep control. We also
present a range of microbenchmarks to evaluate the scalabil-
ity and performance of the Dyson design.

Each of these policies is intended to demonstrate Dyson’s
capabilities, rather than serve as an optimal solution to a par-
ticular problem. A great deal of prior work [6, 7, 12, 20, 21,
22, 24, 29, 30] has investigated each of these problems in
detail. Our claim is that the Dyson architecture opens up
the network infrastructure, permitting rapid innovation and
greater visibility and control over the network as a whole.
Dyson is also intended to be general-purpose and support all
of these disparate policies within a single framework.

4.1 Capacity-aware association
Dyson places control over client-AP associations with the

infrastructure. Prior work [20] demonstrated the efficacy
of an intelligent centralized association policy in WLAN
networks with the overall goal of increasing aggregate ca-
pacity. The key idea is to use information on airtime uti-
lization and an estimate of the feasible PHY rates to deter-
mine the best AP with which to associate a given client. In
DenseAP [20], this policy was implemented in an ad hoc
manner; with Dyson, it is readily implemented as a short
(under 30 lines of code) policy module in Python, as shown
in Figure 3.

The policy runs every 5 s. On each iteration, it scans over
a list of received probe requests from clients. A given probe
request may have been overheard by multiple APs. For each

Input: client MAC, list of (AP MAC, RSSI) for
each received probe request
Output: client MAC, AP with highest
available capacity
def (clientmac, heard_list):

global ap_list, ap_list_lock, ratemap
best_ap = None
max_ac = -1

Compute available capacity for each AP
Pick AP with the highest value
for (apmac, rssi) in heard_list:

ap_list_lock.acquire()
data_rate = ratemap.get_rate(rssi)
airtime = ap_list[apmac].airtime
avail_capacity = data_rate * (1.0 - airtime)
if avail_capacity > max_ac:

max_ac = avail_capacity
best_ap = ap_list[apmac]

ap_list_lock.release()

Assign channel if no clients already
if (best_ap.channel == -1):

best_ap.assign_channel()
Associate client
best_ap.AcceptClient(clientmac)

def run(self):
global pending_associations
global pending_associations_lock

while (True):
pending_associations_lock.acquire()
map(compute_ac, pending_associations)
pending_associations = []
pending_associations_lock.release()
time.sleep(5)

Figure 3: The Dyson capacity-aware association policy.

AP, the available channel capacity is computed, which is the
product of the estimated PHY rate at which the client and
AP will communicate, and the inverse of the AP’s measured
airtime utilization. The PHY rate is determined using a rate
map that maps the RSSI of the received probe request to the
max feasible PHY rate for that client/AP pair. The rate map
computation is performed separately and not shown in the
code in Figure 3.

The AP with the maximum available capacity is selected
as the one with which to associate the client. If the AP cur-
rently has no clients, a channel is assigned to it, and the
AP is then instructed to accept the client’s probe request
(by sending a probe response). This policy is used as the
default association policy in Dyson and is used by the sub-
sequent policies unless otherwise specified. We have per-
formed experiments to confirm that its performance is simi-
lar to DenseAP’s association scheme [20]; these results are
omitted due to lack of space.

4.2 Interference mitigation
All wireless networks suffer from interference, both from

sources within the network and external ones. The problem
of mitigating the impact of interference from nodes within
the network has received much attention from the research

5

C1AP 1

C2

AP 2

Figure 4: Interference example. The two clients deter-
mine that they interfere with each other, despite being
associated with different APs.

community. Dyson’s global connectivity graph can be used
to mitigate the effects of interference between nodes, for ex-
ample, changing AP channel assignments.

In some cases this interference can only be detected by
clients. Figure 4 shows one example in which two clients,
C1 and C2, are associated with different APs that happen
to be on the same channel. The APs themselves would not
readily recognize the interference condition. Dyson’s network-
wide measurements collection permits deeper inspection of
interference relationships than can be obtained at APs alone.

We implemented a simple policy that periodically scans
the global connectivity graph and detects cases in which two
APs and two clients form an interference relationship sim-
ilar to that in Figure 4. The policy changes the channel of
the AP (and its clients) with the smaller number of associ-
ated clients. The affected nodes are informed of the channel
switch directly via a command, thereby avoiding the over-
head of re-discovery and re-association if the policy were
to simply change the channel of the AP. Note that this sim-
ple greedy algorithm might induce a new interference condi-
tion elsewhere in the network, necessitating another channel
switch. To avoid oscillatory behavior, we do not change an
AP’s channel more than once every 10 minutes.

Evaluation
To demonstrate this policy in action, we set up two APs and
clients in our testbed described in Section 3, as shown in
Figure 5(a). Our setup consisted of every client sending up-
link traffic to the AP it is associated with. We used iperf to
generate saturating UDP flows.

We first ran the capacity-aware association policy, result-
ing in the client associations shown in Figure 5(a). These
APs do not interfere with each other, and the association
policy assigned both APs to the same channel. As a re-
sult, clients C1 and C2 interfered with each other, and the
throughput of both clients suffered.

Next, we ran the interference-aware correction policy. The
policy correctly detected the problem, and fixed it by moving
AP1 to a different channel, and re-associated the clients. As
a result, clients C1 and C2 no longer interfered with one an-
other. The resulting improvement in throughput of all clients
is evident in Figures 5(b).

This policy leverages Dyson’s ability to use client coop-

C1

C2 C3
C4

AP 1

AP 2

(a) Node layout showing interference between C1 and C2.

 0

 5

 10

 15

 20

 25

C1 C2 C3 C4
T

hr
ou

gh
pu

t (
M

bp
s)

Nodes associated with AP 2

Default Association Policy
Interference-aware Policy

(b) Throughput impact of interference mitigation on AP2’s
clients.

Figure 5: Impact of interference mitigation policy.

eration effectively in improving the performance of the net-
work. Without cooperation from the client (which provides
connectivity measurements), global knowledge (which chan-
nel is each AP on, its clients, and their connectivity measure-
ments), and deep control (ability to control both clients and
APs), it would not have been possible to detect and address
this problem. A more complex version of this policy can
historical knowledge of the network into account. For ex-
ample, once an interference pattern between locations is de-
termined, the system can proactively assign APs and clients
in those locations to different channels.

4.3 VoIP-aware handoffs
As a another example of the power of Dyson to enable

network-wide optimizations, we present an example policy
in Figure 6 that assigns VoIP clients to a different set of APs
than other clients, to increase overall VoIP call capacity and
avoid bulk transfers from impacting VoIP call quality. This
policy assumes that clients have been classified as VoIP or
non-VoIP clients, for example, based on the client’s MAC
address (e.g., for WiFi VoIP handsets).

For each VoIP client that is assigned to a non-VoIP AP,
the policy identifies a new VoIP-specific AP with which to
associate. For each VoIP AP that the client can potentially
connect to (based on the connectivity graph), the available
capacity metric is computed, as described earlier. The client
is simply handed off to the VoIP AP with the highest avail-

6

Determine if two nodes within range of each other
def can_hear(node1, node2):

return (connectivity[node1][node2] == 1 and
connectivity[node2][node1] == 1)

Find best VoIP AP and handoff client to it
def do_handoff(client)

global ap_list, ap_list_lock
max_ac = -1
best_ap = None
for ap in aplist:

if (is_voip_ap(ap) and can_hear(ap, client)):
Select AP with highest available capacity
(Code not shown...)

client.ap.Handoff(client, best_ap)

Return only VoIP clients
def cull_voip_clients(c):

return c.is_voip() # Based on MAC addr

def run(self):
global ap_list, ap_list_lock
while (True):

ap_list_lock.acquire()
for ap in apmap:

Only worry about non-VoIP APs
if (is_voip_ap(ap)): continue

Get list of VoIP clients
voip_clients = filter (cull_voip_clients,

ap.clients)

For each VoIP client, find nearest AP
for c in voip_clients: do_handoff(c)

ap_list_lock.release()
time.sleep(10)

Figure 6: VoIP-aware handoff policy.

able capacity.
Although there are more sophisticated techniques to im-

prove VoIP capacity in WiFi networks [30], this policy is
simply intended to demonstrate Dyson’s interfaces and pro-
grammability. This simple policy can be extended in various
ways. For example, the assignment of APs as VoIP or non-
VoIP (which is currently static) can be performed in a dy-
namic fashion based on VoIP call load. Likewise, the num-
ber of VoIP clients assigned to each AP could be taken into
consideration. We elide the details due to lack of space.

Evaluation
We carry out the following experiment. We configured two
nodes near each other as access points, and another four
nodes as clients. The capacity-aware association policy de-
scribed in Section 4.1 was used, resulting in two clients be-
ing associated with each AP. The APs were assigned to dif-
ferent channels by the association policy.

Two clients, on separate APs, initiated a bidirectional VoIP
flow while the other two clients began large saturating down-
load traffic using iperf. The VoIP flows each use a standard
g729 VoIP codec that generates 50-byte packets at a rate of
31.2 Kbps.

The bulk flows adversely affect the VoIP flows in terms of

 0

 0.5

 1

 1.5

 2

 2.5

 3

Default 11e(VO+BE) 11e(VO+BK) Handoff policy

Ji
tte

r
(m

s)

VoIP Client 2
VoIP Client 1

Figure 7: Effect of 802.11e prioritization and VoIP-
aware handoffs on VoIP jitter. This is an experiment
with two VoIP clients competing with two bulk-download
clients, with two access points on different channels. Us-
ing the default policy, one VoIP client and one bulk client
are assigned to each AP. The 11e(VO+BE) policy uses
802.11e prioritization, assigning bulk clients to the best ef-
fort queue. 11e(VO+BK) assigns bulk clients to the back-
ground queue. Handoffs uses handoffs to segregate the
VoIP and bulk clients on different APs.

introducing increased packet jitter, which causes the quality
of the VoIP call to degrade. A common requirement for VoIP
calls is that jitter should be no greater than 2ms [3]. Figure 7
shows that with the default configuration, up to 2.17 ms of
jitter is induced by the bulk flows on each VoIP call. Keep
in mind that this is with a small number of clients.

Next, we enabled the VoIP handoff policy, which migrates
the VoIP clients to one of the APs and the bulk flows to the
other. As Figure 7 shows, this substantially reduces the jit-
ter to a mean of 0.02 ms. Of course, this also causes the
bulk transfers to share the channel on a single AP, causing
their throughputs to degrade; prior to migration, each bulk
flow obtained 24 Mbps of throughput. After migration, each
bulk flow degrades to 12 Mbps. This is an explicit tradeoff
between providing good service to VoIP clients versus the
(arguably less severe) impact on bulk flows.

As an alternative, we also experimented with using 802.11e
priority levels, with a simple policy that uses the SetPriority
command. We set up one experiment in which the VoIP
clients were configured to use the 802.11 voice priority and
the bulk clients to use the 802.11e best effort priority, while
maintaining the original AP associations. Another experi-
ment uses the 802.11e background priority, which is lower
than best-effort. As the figure shows, 802.11e priorities do
mitigate some of the jitter effects, but do not operate as well
as the handoff policy. Each bulk client received 24 Mbps of
throughput using the best-effort priority, and 18 MBps us-
ing the background priority. In general, it will not always be
possible to cleanly separate VoIP clients from others in the
network, so in general a combination of migration (where
possible) and 802.11e priority levels is likely to be the most
effective solution.

Note this policy could have been implemented in prior
systems, such as SMARTA [6], MDG [12], or DenseAP [20].

7

However, Dyson enables a network designer to develop and
deploy policies such as this one within an organized frame-
work. This arises from the rich control interface and pro-
grammatic API. Therefore, Dyson can facilitate more com-
plex versions of this kind of policy. For example, the CC
could dynamically determine the number of APs in a given
area that should be devoted exclusively to VoIP traffic based
on traffic demands and client locations.

4.4 User-specific airtime reservation
While current WiFi networks are capable of prioritizing

traffic, they are not capable of reserving a certain fraction
of airtime for a specific user or groups of users. However,
the network designer can easily accomplish this task using
the Dyson framework. We implemented a simple policy
that reserves a fixed amount of airtime for a preferred user.
A high-priority client ch is identified by its MAC address.
For all other clients {c1, c2, ...ck} associated with the same
AP, the residual airtime R = 1 −

∑
i ATU (ci) is com-

puted. If the residual airtime is less than the target airtime for
ch, the policy iterates through the list of non-high-priority
clients, and throttles each of their transmission rates by 10%
of their current throughput. This is performed using the
Dyson Throttle command to the clients, shown in Ta-
ble 2. Throttling is performed periodically until the residual
airtime exceeds the target.

This approach makes no assumptions about the nature of
client traffic, and simply “searches” for the throttle setpoints
that yield adequate airtime to the high-priority client. It
is also conservative, in the sense that clients are throttled
equally, without regards to their load. A straightforward en-
hancement would throttle higher-load clients first. Note that
when ch disassociates with the AP, the low-priority clients
are unthrottled; likewise, when a client moves to another AP
is throttle is released. Multiple high-priority clients can also
be supported on a single AP as long as their airtime targets
do not exceed 100%; in that case, each high-priority client
receives a weighted proportional share of the airtime.

Evaluation
We first demonstrate the efficacy of this policy in a limited
setting, and then move onto a larger setting. The setup con-
sisted of an AP and two clients placed in close proximity of
each other. These are deemed to be regular clients. We then
introduce a third high-priority client with an airtime reserva-
tion target of 50%. All clients in the system were performing
downloads using iperf. For the purposes of exposition, the
policy runs every 10 sec. As seen in Figure 8, the policy
correctly detects that the high-priority user has not received
the requisite share of airtime and throttles the regular users
to compensate.

We now demonstrate this policy in a larger setting across
different APs. The setup consists of four APs (AP1, . . . AP4)
and 11 clients. As before, one of the clients is given an air-
time reservation of 50%. For this experiment, we suspend
the capacity-aware association policy and we manually set
the APs are on different channels, and associate one non-
privileged client with AP1, two non-privileged clients with
AP2, and so on. The privileged client is nomadic. It asso-
ciates with each of the four APs in turn for 10 minutes each.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

A
ir-

tim
e

U
til

iz
at

io
n

Time(s)

Reserved
airtime

Throttled

User arrives

User departs

Regular client #1
Regular client #2
High-priority User

Figure 8: A time series plot of the policy in action. The
setup consisted of two clients in close proximity associ-
ated with the same AP. The high-priority user arrives
shortly before 5s and departs at 55s. The throttle for reg-
ular users is released once the high-priority user departs.

All clients download data as fast as they can using iperf UDP
flows. We first perform the experiment without any reserva-
tion policy, and then repeat it by reserving 50% of the airtime
for the privileged user. We repeated the experiment 10 times.

The impact of the policy is shown in Figure 9. In the
absence of the reservation policy, the fraction of airtime re-
ceived by the privileged user drops as the number of non-
privileged clients increase. However, when the reservation
policy is in force, the privileged user always receives the
50% reserved fraction of the airtime.

The throughput received by the privileged client is shown
in Figure 9(b). Notice that the even though the privileged
client receives a fixed amount of airtime, the throughput it
achieves varies for different APs. This is primarily due to
variability in the quality of the radio link between the privi-
leged client and each of the APs.

This particular policy highlights two aspects of the Dyson
architecture. First, its ability to use throttling as a feasi-
ble mechanism in providing quality of service to clients in
a wireless network. Second, this is an example of a site-
specific customization that is readily implemented through a
small amount of Python code at the central controller. This
is just one example of a range of policies that can be imple-
mented to prioritize different users or traffic classes.

4.5 Uplink/downlink load balancing
In 802.11, fairness is arbitrated on a per-node basis. As

a result, APs and clients all have the same number of trans-
mission opportunities over time. As a result, downlink traf-
fic from APs to clients is limited by the AP’s ability to ac-
quire the channel in the presence of multiple competing up-
link flows [24]. Although various studies have shown that
80% of WLAN traffic tends to be downlink [4], even a small
number of uplink flows can impact fairness.

To address this problem, we implemented a Dyson policy
that attempts to balance the total volume of uplink and down-
link traffic handled by an AP. For each AP, associated clients
are classified as either predominantly upload or download,
based on the ratio of their throughput in each direction. We

8

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

M
ea

n
A

ir-
tim

e
ut

ili
za

tio
n

Number of contending nodes

With Reservation Policy
Without Policy

(a) Impact on airtime

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

M
ea

n
T

hr
ou

gh
pu

t (
M

bp
s)

Number of contending nodes

With Reservation Policy
Without Policy

(b) Impact on throughput

Figure 9: Impact of airtime reservation policy on the air-
time and throughput received by a single privileged user
competing with several other clients. Error bars repre-
sent 10th and 90th percentiles.

then compute the ratio of the mean throughput for upload
and download clients. If the ratio exceeds a specified thresh-
old, it suggests that upload clients are dominant and that re-
balancing is required for this AP.

As a simple approach, the policy throttles upload clients
in an attempt to bring the upload/download ratio closer to 1.
Upload clients are ordered by decreasing uplink throughput,
and the “heaviest” upload client is throttled to 50% of its
current throughput. The policy then sleeps for 10 sec and
re-evaluates the upload/download ratio, iteratively throttling
the highest-throughput upload client until the ratio between
the mean upload and mean download throughput at the AP
falls is less than 1.5.

Evaluation
We conduct the following experiments to demonstrate this
policy in action. The setup consists of two APs and 6 clients.
We initially forced all clients associate with AP1, as shown
in Figure 10(a). Two clients begin uploads to a server on
the wired network, and four clients begin downloads from
the same server. The traffic consists of saturating UDP flows
generated using iperf. We have verified that neither the wired

 0

 0.2

 0.4

 0.6

 0.8

 1

Initial Associations Throttling

R
at

io
 b

et
w

ee
n

m
ea

n
up

lo
ad

 a
nd

m

ea
n

do
w

nl
oa

d
th

ro
ug

hp
ut

(a) Ratio of median download throughput to median
upload throughput

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120
T

hr
ou

gh
pu

t (
M

bp
s)

Time(s)

Associations
changed

Throttling

Download client
Upload client

(b) Timeseries

Figure 11: Uplink/downlink anomaly and its resolution.

network nor the server is a bottleneck at any time.
A total of three stations are contending for the channel

at any time (the two upload clients and the AP). Therefore,
each upload client gets 1/3 of the transmission opportunities,
and the four download clients together share the remaining
1/3. All other things being equal, the throughput ratio be-
tween each of the four download clients and each of the two
upload clients should be 1:4. Figure 11(a) shows the median
download/upload throughput ratio taken over a set of 10 ex-
periments. The ratio is 0.237, which is as we would expect.

The first question is how much this situation can be im-
proved by migrating some of the clients to a separate AP. In
Figure 10(b) we enable the second AP and manually assign
one upload client and two download clients to it. As shown
in Figure 11(a), the throughput ratio between download and
upload clients is about 1:2, as we would expect.

However, even after reassociating clients, there is still a
significant throughput inequity. We next enable the Dyson
uplink/downlink load balancing policy, which throttles the
upload clients on each AP until the throughput ratio is closer
to 1. Figure 11(a) shows that we achieve a ratio of 0.89 after
the policy is enabled. Figure 11(b) shows the throughput
for one upload client and one download client over time, as
well as the points at which clients were reassociated and the
upload client throttled.

To study this effect at a larger scale, we performed an ex-
periment with 4 APs and 15 client nodes. Client-AP associ-

9

AP 1

C2
C1

C3

C4

C5

C6

(a) Original associations

AP 1

C2
C1

C3

C4

C5

C6

AP 2

(b) Improved associations using a second AP

Figure 10: AP-client associations for the uplink/downlink load balancing experiment. Dashed lines represent download
flows and solid lines represent upload flows.

ations were determined using the capacity-aware association
policy (Section 4.1). Note that different APs have a differ-
ent number of associated clients. Each AP is assigned to a
different channel by the policy.

One client associated with each AP generates upload traf-
fic, while others generate download traffic. We ran the exper-
iment twice, first without the uplink/downlink load balanc-
ing policy running, and then with the policy enabled. Fig-
ure 12(a) shows the distribution of the throughput obtained
by each of the clients with and without the policy running.
There is a clear bandwidth inequity in the default case, but
the policy produces a much more balanced distribution of
network capacity to each client.

Of course, achieving fairness is often at odds with max-
imizing overall network capacity. Figure 12(b) shows the
aggregate throughput at each AP before and after the policy
was enabled. As the figure shows, there is only a slight dip
in overall bandwidth usage at each AP, 5.7% on average.

This scenario illustrates a number of features of the Dyson
architecture. First, notice that the problem cannot be solved
without cooperation from the clients. This is an inherent
limitation of AP-only systems, such as DenseAP [20]. Sec-
ond, notice that the Dyson policy interface is quite flexible:
we could have just as easily designed a policy to achieve
other criteria, as in the airtime reservation case described
earlier. Also, it demonstrates an effective feedback loop in
terms of control and information. Information from clients
about their airtime and throughput is used to make changes
to clients in the network with the overall goal of bringing
about fairness.

4.6 Handoff prediction
Dyson can use historical knowledge of client mobility pat-

terns to optimize AP handoffs. Since mobile handoffs are
expensive and can lead to temporary connectivity loss, it
is important to avoid redundant or poorly-chosen handoffs.
The key idea is to predict the next AP a client will encounter
while roaming, in order to avoid handing off to a different
AP that will quickly go out of range. This is possible, since
in many workplaces, users are more likely to travel along

certain paths than others.
While many handoff prediction algorithms have been stud-

ied [26, 28], as a simple demonstration we make use of an
order-1 Markov predictor, which is constructed as follows.
For each client, training data is collected that consists of the
history of the client’s handoffs, represented as a sequence
of tuples {h1, h2, ...hn} where hi = 〈loci,AP i〉 indicating
the location and AP identity for each handoff in the trace.
Next, we compute the conditional transition probabilities P
that indicate the next AP to be assigned at each location as
follows:

P (AP i+1 = a′|loci = l) =
N(l, a′)
N(l)

where N(l, a′) represents the number of times that the client
trace contains a sequence of two tuples {〈l, a〉, 〈l′, a′〉}, and
N(l) is the number of tuples containing location l.

When a client requests an AP handoff (due to the RSSI of
its current AP dropping below a threshold), the handoff pre-
diction policy determines the most likely AP, â, based on the
client’s current location l as â = arg maxa∈A P (a|l). Al-
though much more sophisticated optimizations are possible,
this approach works well in practice. The system can further
improve the prediction process by learning from both its fail-
ures and successes. Our current policy does not implement
these algorithms.

Evaluation
To evaluate the effectiveness of this approach, we designed
an experiment in which we configured 7 APs at various lo-
cations and had a single mobile client roaming the build-
ing along several paths. Figure 13 shows the layout and the
paths traveled. Each path was traversed a different number
of times, as shown in the figure.

The handoff optimization policy constructs a Markov model
to estimate the next AP to be encountered at each location.
For example, when the user approaches location B, the his-
torical mobility data suggests that it is more likely that she
will turn left (towards locations C or D), rather than right (to-
wards location E). This implies that at location B, the next

10

A

C

DE B

2

1

34

5

6

7

Paths

A-B-C

A-B-D

A-B-E

Count

17

12

11

Figure 13: Mobility paths discovered by the optimized handoff policy. This figure shows a partial map of our testbed
with access point locations labeled with numbers. The walking pattern of the mobile user is indicated using footprints.
Points A, B, C, D, and E represent start and end points for the different paths. Each unique path segment determined
by the policy is labeled with a separate color. The inset shows the number of times each path was traversed during our
training session.

AP to be used should be AP 2, rather than APs 3 or 4.
After the training phase, we repeated the experiment with

and without the handoff prediction policy enabled. During
the walk, the mobile client ran a g.2347 audio VoIP session,
and we measured the number of handoffs incurred during
each handoff. Each path was traversed the same number of
times as during the training phase.

Figure 4.6 shows the number of handoffs experienced by
the mobile clients, with and without the policy. As expected,
the client undergoes fewer handoffs when the prediction pol-
icy is enabled. While this is a simple approach, this policy
demonstrates the value of collecting historical information
and using it to tune the network’s behavior in specific ways.
Dyson’s programmatic interface makes it easy to implement
such policies, and provides a vehicle for exploring a range
of algorithms.

4.7 Microbenchmarks
There are two aspects of the Dyson system that impact

its performance and scalability. The first is the overhead in-
duced by handoffs. While handoffs affect the performance
of any wireless network, they are used extensively by Dyson’s
policies for handling mobility, interference mitigation, and
segregating VoIP clients. The handoff overhead has ramifi-
cations on the agility of the system. The second factor to
consider is the load imposed by clients and APs on the CC,
as well as the CC’s ability to react quickly to changes in net-
work state. In this section we measure these aspects of the
system.

Handoff overhead: We measured the time taken for a
MAC-layer handoff of a client from one AP to another. We
configured two APs (on different channels) and a single client,
which was initially associated with AP1. The CC then issued
a Handoff command to migrate the client to AP2. AP1 re-
ceives this command and relays it to the client who quickly

Step Time(ms)
Handoff command executed 0
Message reception (at client) 0.120

Channel change 5.6
Authentication 0.159

Association 0.359
Total 6.238

Table 3: Handoff overhead in Dyson.

switches channels and associations. This process also in-
cludes informing AP2 to permit the new association.

The MAC-layer handoff overhead includes the time for
the command transmission to the client, the time for the
client to switch channels (between to 5 to 7 ms on the Atheros
chipset), as well as the client’s reassociation with the new
AP. Of course, the end-to-end delay experienced by an ap-
plication will be longer, for example, due to the settling time
of the spanning-tree algorithm on the wired backbone.

The results are shown in Table 3, which shows that a
MAC-layer handoff requires approximately 6.2 ms in our
current prototype. This process can be further optimized,
as demonstrated in [25]. Also, the use of protocols such
as IAPP (Inter-Access Point Protocol) at a higher layer, in
which APs cache packets during a handoff and forward them
to the destination AP, can mitigate the packet loss incurred
during a handoff. We have not yet implemented this ap-
proach in Dyson.

Central controller scalability: A number of factors im-
pact the performance of the Dyson central controller, includ-
ing the number of clients, the number of active policies, and
the interval at which APs report statistics. We measure the
effect of each of these factors, configuring the testbed with 6
APs and 17 clients.

We enabled the default capacity aware association pol-
icy at the CC. To exercise it, over a period of 10 minutes

11

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
ea

n
T

hr
ou

gh
pu

t (
M

bp
s)

Node ID

With Policy
Without Policy

(a) Throughput for various nodes with/without load
balancing

 0

 5

 10

 15

 20

 25

1 2 3 4

M
ea

n
T

hr
ou

gh
pu

t (
M

bp
s)

AP

With Policy
Without Policy

(b) Total throughput at each AP with/without load bal-
ancing

Figure 12: Large-scale uplink/downlink anomaly exper-
iment.

we repeatedly manually disassociated clients and then re-
associate them with the AP. We repeated this experiment
while varying the statistics reporting interval from 1 to 10 sec.
As shown in Table 4, the median CPU utilization incurred
even at aggressive reporting intervals is very small.

With the same setup, we enabled three different policies
at the CC and repeated the same experiment. As seen in
Table 5, in all cases, with 23 nodes the central controller’s
CPU utilization is still fairly low.

Access point and client overheads: We are also con-
cerned with the CPU utilization of the access point. Recall
that we use an ALIX 2c2 with a 500 MHz AMD Geode,
and the Dyson software is implemented in Python. We con-
figured an AP with eight clients and varied the intervals at
which the AP reported statistics to the CC. As seen in Ta-
ble 6 the median utilization is still low.

Since clients are periodically sending statistics to the AP,
we also measured the CPU utilization at a client over a pe-
riod of ten minutes. We found the modified Dyson drivers
added negligible overhead in terms of CPU and memory uti-
lization (< 1%).

Traffic overhead for measurements collection: We also
measured the traffic sent by clients and APs to the CC. The
AP’s measurement collection period can be adjusted by the
CC to tradeoff reporting latency and measurement traffic
overhead. As an estimate of this overhead, each client mea-

 0

 1

 2

 3

 4

 5

 6

A-C A-D A-E

N
um

be
r

of
 H

an
do

ffs

Paths

With Mobility Policy
Without Policy

Figure 14: Impact of the handoff prediction policy on
number of handoffs.

Stats interval (s) 10th Median 90th
1 0.1% 1.4% 2.3%
5 0.1% 0.5% 1.1%

10 0.0% 0.2% 1.3%

Table 4: CPU utilization at the CC measured over a pe-
riod of 10 minutes for varying statistics reporting inter-
vals.

surement packet requires at most 850 bytes, including MAC
headers. At the lowest OFDM PHY rate of 6 Mbps, this re-
quires 1184µs to transmit (accounting for MAC and framing
overheads). Therefore, an AP with 20 clients will require
less than 1% of the radio channel for statistics collection.
The AP sends all client statistics as well its own statistics
to the CC. We measured the traffic sent by an AP with six
clients to the CC. With a statistics reporting interval of 5 sec,
the AP generates 1638 bytes/sec in traffic to the CC, which
includes overheads induced by the use of XML-RPC. This
is a small fraction of the backhaul wired network capacity.

5. RELATED WORK
Dyson is complementary to a broad class of prior work on

improving the performance and scalability of wireless net-
works through new techniques at the MAC and PHY lay-
ers [29, 10, 16]. Our focus is on the higher-level aspects
of network management that can be obtained through global
observation and deep control.

Several commercial systems use some form of global knowl-
edge or a central controller for managing WLAN deploy-
ments. Aruba [1] uses central controller to do network-wide
channel and power management to mitigate interference, while
Meru [2] uses a central controller to speed up handoffs for
mobile clients. Detailed information on how these systems
work is difficult to come by - the marketing literature does
not reveal much. However, commercial vendors are ham-
pered by the need to maintain backwards compatibility with
existing 802.11 networks. To the best of our knowledge, no
commercial system includes a client component.

Research systems such as DenseAP [20] and DIRAC [33]
also propose a centralized architecture. However, both sys-
tems explicitly assume that no special software can be run

12

Policy 10th Median 90th
Capacity-aware 0.1% 0.5% 1.1%
Up/down link 0.4% 1.4% 1.9%

Mobility 0.2% 0.4% 1.0%

Table 5: CPU utilization at the CC for three different
policies. A statistics reporting interval of 5 seconds was
used.

Stats interval (s) 10th Median 90th
1 3.5% 4.3% 9.3%
5 0.8% 3.9% 6.1%

10 0.0% 3.5% 6.2%

Table 6: CPU utilization at an AP with eight clients mea-
sured over a period of 10 minutes, for various statistics
reporting intervals.

on clients, and thus are limited in what they can accomplish.
For example, in Section 4.2, we have shown how Dyson im-
proves upon the association policy implemented in DenseAP
using client feedback.

Several research systems use a limited form of client co-
operation. In MDG [12], clients get information from APs
via special fields in the Beacon packets, and the client driver
uses this information to make various decisions (e.g. asso-
ciations). However, the specified interface is quite limited,
and is more akin to the one proposed in the 802.11k stan-
dard [15]. Similarly [19], uses feedback from clients to en-
able use of partially overlapping channels. SMARTA [6]
uses client-cooperation via micro-probing [5] to construct a
conflict graphs [23] of the network. The Dyson architecture,
on the other hand, provides a general-purpose API for man-
aging clients and APs, and can be viewed as a generalized
version of these systems.

Systems such as SoftRepeater [9] and CMAP [31] specif-
ically focus on client cooperation to improve WLAN perfor-
mance. In SoftRepeater, clients with good connections relay
packets for poorly-connected clients. Similar functionality
can be implemented as a policy in the Dyson framework.
In CMAP, clients collaborate to build an interference map
of the network, which is used to schedule transmissions.
Dyson’s network map is a generalized version of CMAP’s
interference graph.

Another interesting design point is explored in [27]. The
idea is to use bare-bones APs with analog-to-digital convert-
ers such that they are oblivious to the PHY/MAC layers be-
ing used at the client. As a result, all intelligence in the net-
work is pushed to the clients. The Dyson approach is practi-
cal, and can be deployed with off-the-shelf 802.11 hardware.

Outside of the networking space, many systems have ex-
plored the use of extensibility via add-on modules with a
well-defined programmatic interface. SPIN [11] and Exok-
ernel [17] are classic examples of opening up the operating
system interface to permit greater flexibility and application-
specific control. Likewise, Lance [32] provides a policy
module interface to customize data collection from a wire-
less sensor network.

6. DISCUSSION AND FUTURE WORK
Our prototype of Dyson has shed light on several direc-

tions for future work. First, our current design assumes that
all clients will be able to provide periodic measurement re-
ports regardless of their power state. Power-constrained clients
such as mobile phones routinely turn off their WiFi inter-
faces (power save mode), and hence may not always be able
to collect or report these measurements. This raises the ques-
tion of what the impact of intermittent measurements collec-
tion will have on efficacy of Dyson policies. If the density
of non-power-constrained clients (e.g. laptops on people’s
desks) is sufficiently high, good measurements can still be
collected. Alternatively, a separate monitoring system like
DAIR [8] can be used. In some cases, the design of polices
itself will have to change to deal with partial information.
We are exploring these alternatives further.

Another issue that we have chosen to leave aside for now
is support for legacy 802.11 clients. One simple approach
would be to assign legacy clients to a separate set of ac-
cess points, on separate channels, so that they do not in-
terfere with the rest of the Dyson network. This is tan-
tamount to deploying a separate WLAN infrastructure for
legacy users. Another approach is to admit legacy clients
into the Dyson network, although the infrastructure would
be unable to gather measurements or control their behavior.
Note that some aspects of Dyson’s control interface (such as
associations) can be used with legacy clients. For now, we
have opted to focus on rethinking the architecture without
the constraints imposed by legacy client support.

We have designed Dyson primarily for enterprise networks,
where clients are under the control of a central IT department
and do not need incentives for running the measurement soft-
ware. We have also not considered the impact of malicious
users reporting false measurements or not responding to com-
mands. These concerns are addressed partially by the fact
that in most enterprise networks, WLAN users are explicitly
authenticated using protocols such as 802.1x. Another inter-
esting possibility is to identify malicious users by comparing
measurement reports from different clients [18].

In the current Dyson prototype, clients perform only pas-
sive measurements. This was done for the sake of simplicity.
We plan to explore the possibility of asking clients to per-
form active measurements, e.g., asking a client to transmit a
series of probe packets to measure loss rate more accurately.
Concerns about overhead and battery drain will likely limit
how often such active measurements are carried out. In the
same vein, one may also ask certain clients to relay packets
for other clients [9]. We have not considered such possibili-
ties in the current prototype.

Finally, we note that while it is quite easy to write new
Dyson policies, it does require some expert knowledge, es-
pecially to avoid unwanted interactions between polices that
run simultaneously. We do not expect an average system ad-
ministrator to have the requisite skill set. We believe that
if Dyson is deployed in a widespread manner, a new class
of experts in programmable network management will arise
that will write and distribute pre-packaged policies.

7. CONCLUSIONS

13

We have presented Dyson, a new architecture for exten-
sible wireless LANs. Dyson provides a network architec-
ture evolves with new challenges and application demands.
By “opening up” clients for measurements collection and
control, Dyson breaks down the traditional barrier between
the infrastructure and its clients, offering substantial benefits
for network management. Dyson’s programmable policies
framework makes it easy to customize the network’s oper-
ation for site-specific needs and new services. The frame-
work also makes it easy to store historical information about
network performance, and leverage it to fine-tune network
parameters.

We have demonstrated a wide range of policies for man-
aging associations, specialized traffic classes (such as VoIP),
mitigating interference, optimizing mobile handoffs, and air-
time reservations for specific users. Put together, these poli-
cies elucidate the benefits of the Dyson architecture in terms
of supporting a high degree of network visibility, control,
and customization. Our extensive measurements of these
policies on a 23-node testbed confirms Dyson’s benefits for
network management.

8. REFERENCES
[1] Enterprise solutions from aruba networks,

http://www.arubanetworks.com/solutions/enterprise.php.
[2] Meru networks - virtual cell,

http://www.merunetworks.com/pdf/whitepapers/.
[3] A reference guide to all things voip,

http://www.voip-info.org/wiki/view/qos.
[4] N. Ahmed, S. Banerjee, S. Keshav, A. Mishra,

K. Papagiannaki, and V. Shrivastava. Interference Mitigation
in Wireless LANs using Speculative Scheduling . In
MobiCom, 2007.

[5] N. Ahmed, U. Ismail, S. Keshav, and D. Papagiannaki.
Online Estimation of RF Interference. In CoNEXT, 2008.

[6] N. Ahmed and S. Keshav. SMARTA: A Self-Managing
Architecture for Thin Access Points. In CoNEXT, 2006.

[7] A. Akella, G. Judd, S. Seshan, and P. Steenkiste. Self
Management in Chaotic Wireless Deployments. In
MobiCom, 2005.

[8] P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh,
A. Wolman, and B. Zill. Enhancing the Security of Corporate
Wi-Fi Networks Using DAIR. In MobiSys, 2006.

[9] V. Bahl, R. Chandra, P. Lee, V. Misra, J. Padhye,
D. Rubenstein, and Y. Yu. Opportunistic Use of Client
Repeaters to Improve Performance of WLANs. In CoNext,
2008.

[10] Y. Bejerano and R. S. Bhatia. MiFi: a framework for fairness
and QoS assurance in current IEEE 802.11 Networks with
Multiple Access Points. In Infocom, 2004.

[11] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility,
safety and performance in the SPIN operating system. In
Proc. the 15th SOSP (SOSP-15), 1995.

[12] I. Broustis, K. Papagiannaki, S. V. Krishnamurthy,
M. Faloutsos, and V. Mhatre. MDG: Measurement-driven
Guidelines for 802.11 WLAN Design. In MobiCom, 2007.

[13] R. Chandra, J. Padhye, A. Wolman, and B. Zill. A
Location-based Management System for Enterprise Wireless
LANs. In NSDI, 2007.

[14] Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benko, J. Chiang,
A. C. Snoeren, G. M. Voelker, and S. Savage. Automated
Cross-Layer Diagnosis of Enterprise Wireless Networks. In
SIGCOMM, 2007.

[15] IEEE. IEEE 802.11k-2008 — Amendment 1: Radio Resource
Measurement of Wireless LANs. June 2008.

[16] G. Judd and P. Steenkiste. Fixing 802.11 Access Point
Selection. In SIGCOMM Poster Session, Pittsburgh, PA, July
2002.

[17] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application performance and flexibility
on Exokernel systems. In Proc. the 16th SOSP (SOSP ’97),
October 1997.

[18] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Sustaining Cooperation in Multi-Hop Wireless Networks. In
Proc. Networked Systems Design and Implementation
(NSDI), May 2005.

[19] A. Mishra, V. Shrivastava, S. Banerjee, and W. Arbaugh.
Partially-overlapped Channels not considered harmful. In
ACM Sigmetrics, 2006.

[20] R. Murty, J. Padhye, R. Chandra, A. Wolman, and B. Zill.
Designing High-Performance Enterprise Wireless Networks.
In NSDI, San Francisco, CA, April 2008.

[21] A. Nicholson and B. Noble. BreadCrumbs: Forecasting
Mobile Connectivity. In MOBICOM, 2008.

[22] A. J. Nicholson, Y. Chawathe, M. Y. Chen, B. D. Noble, and
D. Wetherall. Improved access point selection. In MobiSys,
2006.

[23] J. Padhye, S. Agarwal, V. Padmanabhan, L. Qiu, A. Rao, and
B. Zill. Estimation of Link Interference in Static Multi-hop
Wireless Networks. In IMC, 2005.

[24] S. Pilosof, R. Ramjee, D. Raz, Y. Shavitt, , and P. Sinha.
Understanding TCP fairness over Wireless LAN. In
INFOCOM, 2003.

[25] A. Sharma and E. M. Belding. FreeMAC: Framework for
Multi-Channel MAC Development on 802.11 Hardware. In
ACM SIGCOMM PRESTO, 2008.

[26] M. Shin, A. Mishra, and W. A. Arbaugh. Improving the
Latency of 802.11 Hand-offs using Neighbor Graphs. In
Mobisys, 2004.

[27] S. Singh. Challenges: Wide-Area wireless NETworks
(WANETs). In MOBICOM, 2008.

[28] L. Song, U. Deshpande, U. Kozat, D. Kotz, , and R. Jain.
Predictability of WLAN mobility and its effects on
bandwidth provisioning. In INFOCOM, 2006.

[29] A. Vasan, R. Ramjee, and T. Woo. ECHOS - Enhanced
Capacity 802.11 Hotspots. In Infocom, 2005.

[30] P. Verkaik, Y. Agarwal, R. Gupta, and A. C. Snoeren.
SoftSpeak: Making VoIP Play Fair in Existing 802.11
Deployments. In NSDI, 2009.

[31] M. Vutukuru, K. Jamieson, and H. Balakrishnan. Harnessing
Exposed Terminals in Wireless Networks. In NSDI, 2008.

[32] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh.
Lance: Optimizing high-resolution signal collection in
wireless sensor networks. In Proc. 6th ACM Conference on
Embedded Networked Sensor Systems (SenSys’08),
November 2008.

[33] P. Zerfos, G. Zhong, J. Cheng, H. Luo, S. Lu, and J. J.-R. L.
DIRAC: a software-based wireless router system. In
MOBICOM, 2003.

14

